Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Luminescence ; 38(5): 546-553, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36918369

RESUMEN

A series of donor-π-acceptor dicyanomethylenedihydrofuran (DCDHF)-based chromophores comprising different π-aryl bridges and different terminal groups was synthesized and characterized. The chromophores were synthesized via Knoevenagel condensation of the active methyl-bearing DCDHF (electron acceptor) with a tertiary amine-containing arylaldehyde (electron donor) in dry pyridine at room temperature in the presence of a few drops of acetic acid. The synthesis approach involved the development of phenyl(thienyl)vinyl-bridged dicyanomethylenedihydrofuran dyes with a tertiary amine terminal group. Both absorption and emission spectra were explored. The strong emission properties detected using the synthesized chromophores could be attributed to intramolecular charge transfer. The chemical structures of the synthesized chromophores were verified using 1 H/13 C nuclear magnetic resonance and Fourier transform infrared spectroscopy. Both tertiary amine-containing and arylaldehyde groups were found to influence the biological properties of the synthesized chromophores. The synthesized (DCDHF)-based hybrids were tested to examine antibacterial effectiveness. Derivatives 1 and 2 demonstrated activity towards Gram-positive bacteria rather than Gram-negative bacteria when compared with an amoxicillin antibiotic reference. Finally, molecular docking inspiration was undertaken to determine their binding relationships (PDB code: 1LNZ).


Asunto(s)
Colorantes , Furanos , Simulación del Acoplamiento Molecular , Furanos/química , Aminas
2.
Luminescence ; 38(2): 92-98, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36427249

RESUMEN

Indigo Carmine is a hazardous dye and produces an allergic action for humans despite the excessive use of the dye in several industrial fields. A sensitive and simple fluorescent assay for determining Indigo Carmine relying on quenching of the fluorescent europium-doped carbon dots by the action of inner filter effect was developed. This sensing platform involved the preparation of europium-doped carbon dots from the hydrothermal carbonization of tannic acid and europium chloride, which was used as fluorescent reagent with a distinctive excitation/emission wavelength at 307/340 nm. Both excitation and emission fluorescence of prepared carbon dots can be successfully quenched by adding Indigo Carmine dye. The developed spectrofluorimetric method exhibits good linearity with the concentration of Indigo Carmine dye in the range of 1.5 to 10.0 µg/ml and provided a limit of detection (LOD) value of 0.40 µg/ml. Furthermore, the prepared carbon nanoparticles were identified and characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR), and ultraviolet (UV)-spectrophotometer techniques. In addition, the developed detecting approach was applied to determine Indigo Carmine in juice samples with acceptable recovery.


Asunto(s)
Carmin de Índigo , Puntos Cuánticos , Humanos , Carbono , Carmín , Europio , Colorantes , Taninos , Colorantes Fluorescentes
3.
Molecules ; 28(2)2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36677616

RESUMEN

Alzheimer's disease is a major public brain condition that has resulted in many deaths, as revealed by the World Health Organization (WHO). Conventional Alzheimer's treatments such as chemotherapy, surgery, and radiotherapy are not very effective and are usually associated with several adverse effects. Therefore, it is necessary to find a new therapeutic approach that completely treats Alzheimer's disease without many side effects. In this research project, we report the synthesis and biological activities of some new thiazole-bearing sulfonamide analogs (1-21) as potent anti-Alzheimer's agents. Suitable characterization techniques were employed, and the density functional theory (DFT) computational approach, as well as in-silico molecular modeling, has been employed to assess the electronic properties and anti-Alzheimer's potency of the analogs. All analogs exhibited a varied degree of inhibitory potential, but analog 1 was found to have excellent potency (IC50 = 0.10 ± 0.05 µM for AChE) and (IC50 = 0.20 ± 0.050 µM for BuChE) as compared to the reference drug donepezil (IC50 = 2.16 ± 0.12 µM and 4.5 ± 0.11 µM). The structure-activity relationship was established, and it mainly depends upon the nature, position, number, and electron-donating/-withdrawing effects of the substituent/s on the phenyl rings.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Simulación del Acoplamiento Molecular , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de la Colinesterasa , Tiazoles/farmacología , Tiazoles/uso terapéutico , Acetilcolinesterasa/metabolismo , Relación Estructura-Actividad , Sulfonamidas/farmacología , Estructura Molecular
4.
Molecules ; 27(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36431995

RESUMEN

Herbal products are a major source of herbal medicines and other medicines. Essential oils have shown various pharmacological activities, such as antiviral activity, and therefore are proposed to have potential activity against SARS-CoV-2. Due to their lipophilicity, essential oils can easily penetrate the viral membrane and cause the viral membrane to rupture. In addition, crude essential oils usually have many active constituents that can act on different parts of the virus including its cell entry, translation, transcription, and assembly. They have further beneficial pharmacological effects on the host's respiratory system, including anti-inflammatory, immune regulation, bronchiectasis, and mucolytics. This review reported potential essential oils which could be promising drugs for COVID-19 eradication. Essential oils have many advantages because they are promising volatile antiviral molecules, making them potential drug targets for the prevention and treatment of COVID-19, whether used alone or in combination with other chemotherapeutic drugs. The aim of the current review is to shed light on the potential essential oils against enveloped viruses and their proposed activity against SARS-CoV-2 which is also an enveloped virus. The objectives were to present all data reflecting the promising activities of diverse essential oils against enveloped viruses and how they could contribute to the eradication of COVID disease, especially in indoor places. The data collected for the current review were obtained through the SciFinder database, Google scholar, PubMed, and Mendeley database. The data of the current review focused on the most common essential oils which are available in the pharmaceutical market and showed noticeable activities against enveloped viruses such as HSV and influenza.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Aceites Volátiles , Plantas Medicinales , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , SARS-CoV-2 , Antivirales/farmacología , Antivirales/uso terapéutico
5.
Molecules ; 28(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36615218

RESUMEN

Triazole-based thiosemicarbazone derivatives (6a-u) were synthesized then characterized by spectroscopic techniques, such as 1HNMR and 13CNMR and HRMS (ESI). Newly synthesized derivatives were screened in vitro for inhibitory activity against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes. All derivatives (except 6c and 6d, which were found to be completely inactive) demonstrated moderate to good inhibitory effects ranging from 0.10 ± 0.050 to 12.20 ± 0.30 µM (for AChE) and 0.20 ± 0.10 to 14.10 ± 0.40 µM (for BuChE). The analogue 6i (IC50 = 0.10 ± 0.050 for AChE and IC50 = 0.20 ± 0.050 µM for BuChE), which had di-substitutions (2-nitro, 3-hydroxy groups) at ring B and tri-substitutions (2-nitro, 4,5-dichloro groups) at ring C, and analogue 6b (IC50 = 0.20 ± 0.10 µM for AChE and IC50 = 0.30 ± 0.10 µM for BuChE), which had di-Cl at 4,5, -NO2 groups at 2-position of phenyl ring B and hydroxy group at ortho-position of phenyl ring C, emerged as the most potent inhibitors of both targeted enzymes (AChE and BuChE) among the current series. A structure-activity relationship (SAR) was developed based on nature, position, number, electron donating/withdrawing effects of substitution/s on phenyl rings. Molecular docking studies were used to describe binding interactions of the most active inhibitors with active sites of AChE and BuChE.


Asunto(s)
Enfermedad de Alzheimer , Inhibidores de la Colinesterasa , Tiosemicarbazonas , Humanos , Acetilcolinesterasa/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Butirilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/farmacología , Inhibidores de la Colinesterasa/uso terapéutico , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Tiosemicarbazonas/síntesis química , Tiosemicarbazonas/farmacología , Tiosemicarbazonas/uso terapéutico
6.
Molecules ; 27(20)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36296520

RESUMEN

Diabetes mellitus is one of the most chronic metabolic diseases. In the past few years, our research group has synthesized and evaluated libraries of heterocyclic analogs against α-glucosidase and α-amylase enzymes and found encouraging results. The current study comprises the evaluation of benzimidazole-bearing thiosemicarbazone as antidiabetic agents. A library of fifteen derivatives (7-21) was synthesized, characterized via different spectroscopic techniques such as HREI-MS, NMR, and screened against α-glucosidase and α-amylase enzymes. All derivatives exhibited excellent to good biological inhibitory potentials. Derivatives 19 (IC50 = 1.30 ± 0.20 µM and 1.20 ± 0.20 µM) and 20 (IC50 = 1.60 ± 0.20 µM and 1.10 ± 0.01 µM) were found to be the most potent among the series when compared with standard drug acarbose (IC50 = 11.29 ± 0.07 and 11.12 ± 0.15 µM, respectively). These derivatives may potentially serve as the lead candidates for the development of new therapeutic representatives. The structure-activity relationship was carried out for all molecules which are mainly based upon the pattern of substituent/s on phenyl rings. Moreover, in silico docking studies were carried out to investigate the active binding mode of selected derivatives with the target enzymes.


Asunto(s)
Inhibidores de Glicósido Hidrolasas , Tiosemicarbazonas , Inhibidores de Glicósido Hidrolasas/química , alfa-Amilasas , Simulación del Acoplamiento Molecular , alfa-Glucosidasas/metabolismo , Acarbosa , Tiosemicarbazonas/farmacología , Relación Estructura-Actividad , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Bencimidazoles/química , Estructura Molecular
7.
Int J Biol Macromol ; 267(Pt 2): 131466, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599420

RESUMEN

A simple strategy was introduced to develop fluorescent wood with the ability to alter its color when exposed to both visible and ultraviolet lights. Injecting a combination of europium and dysprosium doped aluminate (EDA; 7-12 nm) nanoparticles and polyester resin (PET) into a lignin-modified wood (LMW) produced a translucent smart wooden window with fluorescence and afterglow emission properties. In order to prevent formation of aggregates and improve the preparation process of transparent woods, EDA must be properly disseminated in the polyester matrix. We analyzed the fluorescent wood samples using a variety of spectroscopic and microscopic methods, including energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), photoluminescence spectra, and hardness tests. We found that the photoluminescent woods had an excitation peak at 365 nm and emission peaks at 437 nm and 517 nm. The translucent luminous woods showed rapid and reversible emission response to ultraviolet light. Fluorescence emission was detected for samples with lower EDA content, and afterglow emission was detected for wood samples with higher EDA content. Increases in EDA content were associated with improvements in water resistance and ultraviolet radiation protection in the EDA@PET-infiltrated wood.


Asunto(s)
Lignina , Nanocompuestos , Poliésteres , Madera , Lignina/química , Nanocompuestos/química , Madera/química , Poliésteres/química , Rayos Ultravioleta
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 1): 122124, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36427404

RESUMEN

Turmeric, a spice known for its therapeutic benefits, is a major source of curcumin which is a polyphenol with anti-inflammatory properties. It aids in treating arthritis, anxiety, metabolic syndrome, liver disease, hyperlipidemia, and inflammatory diseases. In this study, a novel fluorescence probe was designed to detect the adulteration of curcumin by metanil yellow (a harmful artificial dye). The probe was synthesized from the carbonization and conversion of the Tannic acid-Eu3+ complex to bright fluorescence Eu-carbon dots in the presence of orthophosphoric acid. The size, morphological, and optical features of the formed Eu-carbon dots were characterized by UV, SEM, TEM, and FTIR techniques. Furthermore, the formed Eu-carbon dots possess unique fluorescence excitation and emission features at 307.5 nm and 340.6 nm, respectively. These fluorescence features can be successfully quenched upon the addition of metanil yellow dye. The value of quenching in the fluorescence intensity of the Eu-C-dots was directly proportional to the dye's concentration. The LOD value for the proposed method was 0.390 µg/mL with a linear range of 1.0-15.0 µg/mL. Furthermore, the methodology exhibited good recovery values for determining the studied dye without any interference from the presence of curcumin.


Asunto(s)
Curcuma , Curcumina , Polvos , Fluorescencia , Europio , Carbono
9.
ACS Omega ; 8(39): 35746-35754, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37810661

RESUMEN

Drought is a prime stress, drastically affecting plant growth, development, and yield. Plants have evolved various physiological, molecular, and biochemical mechanisms to cope with drought. Investigating specific biochemical pathways related to drought tolerance mechanisms of plants through biotechnology approaches is one of the quickest and most effective strategies for enhancing crop production. Among them, microRNAs (miRNAs) are the principal post-transcriptional regulators of gene expression in plants during plant growth under biotic and abiotic stresses. In this study, five different chickpea genotypes (Inci, Hasan bey, Arda, Seçkin, and Diyar 95) were grown under normal and drought stress. We recorded the expression levels of microRNAs in these genotypes and found differential expression (miRNA396, miR408, miRNA414, miRNA528, and miRNA1533) under contrasting conditions. Results revealed that miRNA414 and miRNA528 considerably increased in all genotypes under drought stress, and expression levels of miRNA418, miRNA1533, and miRNA396 (except for the Seçkin genotype) were found to be higher under the watered conditions. These genotypes were also investigated for heavy metal, phenolic acid, protein, and nitrogen concentrations under normal and drought stress conditions. The Arda genotype showed a significant increase in nitrogen (5.46%) and protein contents (28.3%), while protein contents were decreased in the Hasan bey and Seçkin genotypes subjected to drought stress. In the case of metals, iron was the most abundant element in all genotypes (Inci = 15.4 ppm, Hasan bey = 29.6 ppm, Seçkin = 37.8 ppm, Arda = 26.3 ppm, and Diyar 95 = 40.8 ppm) under normal conditions. Interestingly, these results were related to miRNA expression in the chickpea genotypes and hint at the regulation of multiple pathways under drought conditions. Overall, the present study will help us to understand the miRNA-mediated regulation of various pathways in chickpea genotypes.

10.
Sci Rep ; 13(1): 7676, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169776

RESUMEN

This study evaluated the topical effect of Lepidium sativum lyophilized seed extract (LSLE) towards Sustanon-induced alopecia in male adult Wistar albino rats in vivo, compared to minoxidil topical reference standard drug (MRD). LC-MS/MS together with molecular networking was used to profile the metabolites of LSLE. LSLE treated group revealed significant changes in alopecia related biomarkers, perturbation of androgenic markers; decline in testosterone level and elevation in 5α-reductase (5-AR); decline in the cholesterol level. On the other hand, LSLE treated group showed improvement in vascular markers; CTGF, FGF and VEGF. Groups treated topically with minoxidil and LSLE showed significant improvement in hair length. LC-MS/MS profile of LSLE tentatively identified 17 constituents: mainly glucosinolates, flavonoid glycosides, alkaloids and phenolic acids. The results point to the potential role of LSLE in the treatment of alopecia through decreasing 5(alpha)-dihydrotestosterone levels. Molecular docking was attempted to evaluate the probable binding mode of identified compounds to androgen receptor (PDB code: 4K7A).


Asunto(s)
Cabello , Minoxidil , Animales , Inhibidores de 5-alfa-Reductasa/farmacología , Alopecia/tratamiento farmacológico , Cromatografía Liquida , Lepidium sativum , Minoxidil/farmacología , Simulación del Acoplamiento Molecular , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem , Ratas
11.
Antibiotics (Basel) ; 12(3)2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36978330

RESUMEN

The worldwide crises from multi-drug-resistant (MDR) bacterial infections are pushing us to search for new alternative therapies. The renewed interest in medicinal plants has gained the attention of our research group. Tamarindus indica L. (T. indica) is one of the traditional medicines used for a wide range of diseases. Therefore, we evaluated the antimicrobial activities of ethanolic extract of T. indica. The inhibitions zones, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and fractional inhibitor concentration indices (FICI) against Gram+ve and -ve pathogens were detected. The bioactive compounds from T. indica extract were identified by mass spectroscopy, thin-layer chromatography, and bio-autographic assay. We performed scanning electron microscopy (SEM) and molecular docking studies to confirm possible mechanisms of actions and antivirulence activities, respectively. We found more promising antimicrobial activities against MDR pathogens with MIC and MBC values for Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (P. aeruginosa), i.e., (0.78, 3.12 mg/mL) and (1.56, 3.12 mg/mL), respectively. The antimicrobial activities of this extract were attributed to its capability to impair cell membrane permeability, inducing bacterial cell lysis, which was confirmed by the morphological changes observed under SEM. The synergistic interactions between this extract and commonly used antibiotics were confirmed (FICI values < 0.5). The bioactive compounds of this extract were bis (2-ethylhexyl)phthalate, phenol, 2,4-bis(1,1-dimethylethyl), 1,2-benzenedicarboxylic acid, and bis(8-methylnonyl) ester. Additionally, this extract showed antivirulence activities, especially against the S. aureus protease and P. aeruginosa elastase. In conclusion, we hope that pharmaceutical companies can utilize our findings to produce a new formulation of T. indica ethanolic extract with other antibiotics.

12.
Biomed Pharmacother ; 164: 114917, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37244180

RESUMEN

Parkinson's disease (PD) is a progressive neuroinflammatory and degenerative disease. In this study, we investigated the neuroprotective action of betanin in the rotenone-induced Parkinson-like mice model. Twenty-eight adult male Swiss albino mice were divided into four groups: Vehicle, Rotenone, Rotenone + Betanin 50 mg/kg, and Rotenone + Betanin 100 mg/kg. Parkinsonism was induced by subcutaneous injection of 9 doses of rotenone (1 mg/kg/48 h) plus betanin at 50 and 100 mg/kg/48 h in rotenone + betanin groups for twenty days. Motor dysfunction was assessed after the end of the therapeutic period using the pole, rotarod, open-field, grid, and cylinder tests. Malondialdehyde, reduced glutathione (GSH), Toll-like receptor 4 (TLR4), myeloid differentiation primary response-88 (MyD88), nuclear factor kappa- B (NF-κB), neuronal degeneration in the striatum were evaluated. In addition, we assessed the immunohistochemical densities of tyrosine hydroxylase (TH) in Str and in substantia nigra compacta (SNpc). Our results showed that rotenone remarkably decreased (results of tests), increased decreased TH density with a significant increase in MDA, TLR4, MyD88, NF-κB, and a decrease in GSH (p < 0.05). Treatment with betanin significantly results of tests), increased TH density. Furthermore, betanin significantly downregulated malondialdehyde and improved GSH. Additionally, the expression of TLR4, MyD88, and NF-κB was significantly alleviated. Betanin's powerful antioxidative and anti-inflammatory properties can be related to its neuroprotective potential as well as its ability to delay or prevent neurodegeneration in PD.


Asunto(s)
Enfermedad de Parkinson , Trastornos Parkinsonianos , Masculino , Ratones , Animales , FN-kappa B/metabolismo , Factor 88 de Diferenciación Mieloide/metabolismo , Receptor Toll-Like 4/metabolismo , Simulación del Acoplamiento Molecular , Regulación hacia Abajo , Rotenona/efectos adversos , Betacianinas/farmacología , Trastornos Parkinsonianos/inducido químicamente , Trastornos Parkinsonianos/tratamiento farmacológico , Trastornos Parkinsonianos/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/metabolismo , Malondialdehído
13.
Genes (Basel) ; 14(1)2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36672787

RESUMEN

The common bean (Phaseolus vulgaris L.), whose annual production is 26 million tons worldwide, is one of the main sources of protein and is known as one of the most important food sources. In this study, the karyotype variations and the genome size of four common bean genotypes in Turkey were investigated to determine whether the geographic variables in these regions affected the genome size and the karyotype parameters. In addition, it is known that as that the cytological and chromosomal parameters change under the influence of the climatic conditions of each region, appropriate and stable cytological methods for each plant facilitate and enable the determination of the chromosomal structure and the identification of specific chromosomes in the genotypes of the relevant region. Correct and valuable information such as this enables breeders and researchers to determine the correct shape and actual size of chromosomes. The genome size of the genotypes was measured with a flow cytometer, and chromosome analyses were performed with the squash method. For each genotype, the karyotype parameters, such as the number of somatic chromosomes, the Mean Total Chromosome Length (MTCL), the Mean Centromere Index (MCI), and the Mean Arm Ratio (MAR), were measured. The results showed that the highest and the lowest amounts of DNA per nucleus (3.28 pg and 1.49 pg) were observed in the Bitlis and Elazig genotypes. In addition, all genotype chromosome numbers were counted to be 2n = 2x = 22. The Mean Total Chromosome Length varied from 15.65 µm in Elazig to 34.24 µm in the Bitlis genotype. The Mean Chromosome Length ranged between 1.42 µm and 3.11 µm in the Elazig and Bitlis genotypes. The Hakkari and Van genotypes consist of eleven metacentric chromosomes, while the Bitlis and Elazig genotypes consist of ten metacentric chromosomes and one sub-metacentric chromosome. However, the Mean Centromere Index and Arm Ratio differed considerably among the genotypes. The highest (46.88) and the lowest (43.18) values of the Mean Centromere Index were observed in the Hakkari and Elazig genotypes, respectively. On the other hand, the lowest (1.15) and the highest (1.36) values of the Mean Arm Ratio were obtained in the Bitlis and Elazig genotypes, respectively. Eventually, intraspecies variations in genome size and chromosomal parameters were observed, and it was determined that the changes in nuclear DNA content and different chromosomal parameters among the four Phaseolus genotypes from four different regions of Turkey indicate the effect of climate change in the regions on these parameters. Such information in these areas can be used as useful information for the improvement of this plant and breeding programs.


Asunto(s)
Phaseolus , Phaseolus/genética , Fitomejoramiento , ADN , Cariotipo , Centrómero
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda