Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Mol Phylogenet Evol ; 198: 108117, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38852908

RESUMEN

The Least Nighthawk Chordeiles pusillus is widespread wherever there are savannas in the South American tropics, often in isolated patches, such as white-sands savannas in the Amazon rainforest realm. Here, we investigate genetic relationships between populations of the Least Nighthawk to understand historical processes leading to its diversification and to determine dispersal routes between northern and southern savannas by way of three hypothesized dispersal corridors by comparing samples from white-sand savannas to samples from other savannas outside of the Amazon rainforest region. We use 32 mtDNA samples from the range of C. pusillus to infer a dated phylogeny. In a subset of 17 samples, we use shotgun sequences to infer a distance-based phylogeny and to estimate individual admixture proportions. We calculate gene flow and shared alleles between white-sand and non-Amazonian populations using the ABBA-BABA test (D statistics), and Principal Component Analysis (PCA) to examine genetic structure within and between lineages. Finally, we use species distribution modelling (SDM) of conditions during the Last Glacial Maximum (LGM), currently, and in the future (2050-2080) to predict potential species occurrence under a climate change scenario. Two main clades (estimated to have diverged around 1.07 million years ago) were recovered with mtDNA sequences and Single Nucleotide Polymorphism (SNPs) and were supported by NGSadmix and PCA: one in the Amazon basin white-sand savannas, the other in the non-Amazonian savannas. Possible allele sharing between these clades was indicated by the D-statistics between northern non-Amazonian populations and the white-sand savanna population, but this was not corroborated by the admixture analyses. Dispersal among northern non-Amazonian populations may have occurred in a dry corridor between the Guianan and the Brazilian Shield, which has since moved eastward. Our data suggest that the lineages separated well before the Last Glacial Maximum, consequently dispersal could have happened at any earlier time during similar climatic conditions. Subsequently, non-Amazonian lineages became more divergent among themselves, possibly connecting and dispersing across the mouth of the Amazon River across Marajó island during favourable climatic conditions in the Pleistocene.

2.
Mol Ecol ; 32(9): 2186-2205, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36798996

RESUMEN

Understanding the factors that govern variation in genetic structure across species is key to the study of speciation and population genetics. Genetic structure has been linked to several aspects of life history, such as foraging strategy, habitat association, migration distance, and dispersal ability, all of which might influence dispersal and gene flow. Comparative studies of population genetic data from species with differing life histories provide opportunities to tease apart the role of dispersal in shaping gene flow and population genetic structure. Here, we examine population genetic data from sets of bird species specialized on a series of Amazonian habitat types hypothesized to filter for species with dramatically different dispersal abilities: stable upland forest, dynamic floodplain forest, and highly dynamic riverine islands. Using genome-wide markers, we show that habitat type has a significant effect on population genetic structure, with species in upland forest, floodplain forest, and riverine islands exhibiting progressively lower levels of structure. Although morphological traits used as proxies for individual-level dispersal ability did not explain this pattern, population genetic measures of gene flow are elevated in species from more dynamic riverine habitats. Our results suggest that the habitat in which a species occurs drives the degree of population genetic structuring via its impact on long-term fluctuations in levels of gene flow, with species in highly dynamic habitats having particularly elevated gene flow. These differences in genetic variation across taxa specialized in distinct habitats may lead to disparate responses to environmental change or habitat-specific diversification dynamics over evolutionary time scales.


A compreensão dos fatores que governam a variação da estrutura genética entre as espécies é fundamental para o estudo da especiação e da genética das populações. A estrutura genética tem sido ligada a vários aspectos da história da vida, tais como estratégia de forrageio, associação ao habitat, distância de migração e capacidade de dispersão, os quais poderiam influenciar a dispersão e o fluxo gênico. Estudos comparativos usando espécies que diferem nas suas histórias de vida oferecem uma oportunidade para desvendar o papel da dispersão no estabelecimento do fluxo gênico e da estrutura genética da população. Aqui examinamos dados genéticos populacionais de diversas espécies de aves com diferentes capacidades de dispersão especializadas em três habitats amazônicos, incluindo florestas de terra-firme, florestas de várzea e ilhas fluviais, cujos ambientes ripários são altamente dinâmicos. Utilizando dados genômicos que incluem milhares de loci, mostramos que o tipo de habitat tem um efeito significativo na estruturação genética das populações; espécies de florestas de terra-firme, florestas de várzea e ilhas fluviais exibem níveis de estruturação progressivamente menores. Embora os traços morfológicos frequentemente usados como indicadores da capacidade de dispersão a nível individual não expliquem este padrão, as medidas genéticas populacionais de fluxo gênico são altas em espécies associadas a habitats ribeirinhos mais dinâmicos. Nossos resultados sugerem que o habitat no qual uma espécie é encontrada determina o grau de estruturação genética da população através de seu impacto nas flutuações de longo prazo do fluxo gênico, com espécies em habitats altamente dinâmicos tendo um fluxo gênico particularmente alto. As diferenças na variação genética dos táxons especializados em diferentes habitats podem resultar em respostas díspares às mesmas mudanças ambientais, ou dinâmicas de diversificação específicas a um determinado habitat ao longo de escalas de tempo evolutivas.


Comprender los factores que rigen la variación de la estructura genética entre especies es clave para el estudio de la especiación y la genética de poblaciones. La estructura genética se ha relacionado con varios aspectos de la historia vital, como la estrategia de búsqueda de alimento, la asociación de hábitats, la distancia de migración y la capacidad de dispersión, factores todos ellos que podrían influir en la dispersión y el flujo genético. Los estudios comparativos de datos genéticos poblacionales de especies con historias vitales diferentes ofrecen la oportunidad de desentrañar el papel de la dispersión en la conformación del flujo genético y la estructura genética poblacional. En este trabajo examinamos los datos genéticos de poblaciones de especies de aves especializadas en una serie de hábitats amazónicos que, según la hipótesis, filtran especies con capacidades de dispersión radicalmente diferentes: bosques estables de tierras altas, bosques dinámicos de llanuras aluviales e islas fluviales altamente dinámicas. Utilizando marcadores genómicos, demostramos que el tipo de hábitat tiene un efecto significativo en la estructura genética de la población, y que las especies de los bosques de tierras altas, los bosques inundables y las islas fluviales presentan niveles de estructura progresivamente más bajos. Aunque los rasgos morfológicos utilizados como indicadores de la capacidad de dispersión individual no explican este patrón, las medidas genéticas poblacionales del flujo genético son más elevadas en las especies de hábitats fluviales más dinámicos. Nuestros resultados sugieren que el hábitat en el que se encuentra una especie determina el grado de estructuración genética de la población a través de su impacto en las fluctuaciones a largo plazo de los niveles de flujo genético, siendo las especies de hábitats muy dinámicos las que presentan un flujo genético particularmente elevado. Estas diferencias en la variación genética entre taxones especializados en hábitats distintos pueden dar lugar a respuestas dispares al cambio ambiental o a dinámicas de diversificación específicas del hbitat a lo largo de escalas temporales evolutivas.


Asunto(s)
Ecosistema , Flujo Génico , Animales , Bosques , Aves/genética , Genética de Población , Variación Genética
3.
Mol Ecol ; 32(1): 214-228, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36261866

RESUMEN

Although vicariant processes are expected to leave similar genomic signatures among codistributed taxa, ecological traits such as habitat and stratum can influence genetic divergence within species. Here, we combined landscape history and habitat specialization to understand the historical and ecological factors responsible for current levels of genetic divergence in three species of birds specialized in seasonally flooded habitats in muddy rivers and which are widespread in the Amazon basin but have isolated populations in the Rio Branco. Populations of the white-bellied spinetail (Mazaria propinqua), lesser wagtail-tyrant (Stigmatura napensis) and bicolored conebill (Conirostrum bicolor) are currently isolated in the Rio Branco by the black-waters of the lower Rio Negro, offering a unique opportunity to test the effect of river colour as a barrier to gene flow. We used ultraconserved elements (UCEs) to test alternative hypotheses of population history in a comparative phylogeographical approach by modelling genetic structure, demographic history and testing for shared divergence time among codistributed taxa. Our analyses revealed that (i) all three populations from the Rio Branco floodplains are genetically distinct from other populations along the Amazon River floodplains; (ii) these divergences are the result of at least two distinct events, consistent with species habitat specialization; and (iii) the most likely model of population evolution includes lower population connectivity during the Late Pleistocene transition (~250,000 years ago), with gene flow being completely disrupted after the Last Glacial Maximum (~21,000 years ago). Our findings highlight how landscape evolution modulates population connectivity in habitat specialist species and how organisms can have different responses to the same historical processes of environmental change, depending on their habitat affinity.


Asunto(s)
Variación Genética , Metagenómica , Animales , Ecosistema , Filogeografía , Aves/genética , Filogenia , ADN Mitocondrial/genética
4.
Mol Ecol ; 31(15): 4050-4066, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35665558

RESUMEN

Phylogeographical studies of the most species-rich region of the planet-the Amazon basin-have repeatedly uncovered genetically distinctive, allopatric lineages within currently named species, but understanding whether such lineages are reproductively isolated species is challenging. Here we harness the power of genome-wide data sets together with detailed phylogeographical sampling to both characterize the number of unique lineages and infer levels of reproductive isolation for three parapatric manakin species that make up the genus Pipra. The mitochondrial and nuclear genomes both support six distinctive lineages. The youngest lineages are now highly admixed with each other across major portions of their geographical ranges with one lineage now extinct in a genomically unadmixed state. In contrast, the oldest sets of lineages-dated to 1.4 million years-exhibit narrow hybrid zones. By fitting demographic models to parapatric lineage pairs we found that levels of gene flow and genomic homogenization decline with increasing evolutionary age. Only lineages descending from the basal node at 1.4 million years ago in the genus experience negligible gene flow, possess genomes resistant to homogenization and are separated by narrow hybrid zones. We conclude that a million years or more were required for Pipra manakins to become reproductively isolated. We suggest the six lineages be reclassified as two or three reproductively isolated species. Our unique approach to quantifying reproductive isolation in parapatric lineages could be applied broadly to other phylogeographical studies and would help determine species classification of the plethora of newly identified lineages in the Amazon basin and other regions.


Asunto(s)
Flujo Génico , Passeriformes , Animales , Especiación Genética , Genómica , Passeriformes/genética , Filogenia , Filogeografía , Aislamiento Reproductivo
5.
Proc Natl Acad Sci U S A ; 116(16): 7916-7925, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30936315

RESUMEN

Avian diversification has been influenced by global climate change, plate tectonic movements, and mass extinction events. However, the impact of these factors on the diversification of the hyperdiverse perching birds (passerines) is unclear because family level relationships are unresolved and the timing of splitting events among lineages is uncertain. We analyzed DNA data from 4,060 nuclear loci and 137 passerine families using concatenation and coalescent approaches to infer a comprehensive phylogenetic hypothesis that clarifies relationships among all passerine families. Then, we calibrated this phylogeny using 13 fossils to examine the effects of different events in Earth history on the timing and rate of passerine diversification. Our analyses reconcile passerine diversification with the fossil and geological records; suggest that passerines originated on the Australian landmass ∼47 Ma; and show that subsequent dispersal and diversification of passerines was affected by a number of climatological and geological events, such as Oligocene glaciation and inundation of the New Zealand landmass. Although passerine diversification rates fluctuated throughout the Cenozoic, we find no link between the rate of passerine diversification and Cenozoic global temperature, and our analyses show that the increases in passerine diversification rate we observe are disconnected from the colonization of new continents. Taken together, these results suggest more complex mechanisms than temperature change or ecological opportunity have controlled macroscale patterns of passerine speciation.


Asunto(s)
Passeriformes , Animales , Australia , Biodiversidad , Evolución Biológica , Fósiles , Nueva Zelanda , Passeriformes/clasificación , Passeriformes/genética , Passeriformes/fisiología , Filogenia
6.
Mol Phylogenet Evol ; 162: 107206, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34015447

RESUMEN

Several bird taxa have been recently described or elevated to full species and almost twice as many bird species than are currently recognized may exist. Defining species is one of the most basic and important issues in biological science because unknown or poorly defined species hamper subsequent studies. Here, we evaluate the species limits and evolutionary history of Tunchiornis ochraceiceps-a widespread forest songbird that occurs in the lowlands of Central America, Chocó and Amazonia-using an integrative approach that includes plumage coloration, morphometrics, vocalization and genomic data. The species has a relatively old crown age (~9 Ma) and comprises several lineages with little, if any, evidence of gene flow among them. We propose a taxonomic arrangement composed of four species, three with a plumage coloration diagnosis and one deeply divergent cryptic species. Most of the remaining lineages have variable but unfixed phenotypic characters despite their relatively old origin. This decoupling of genomic and phenotypic differentiation reveals a remarkable case of phenotypic conservatism, possibly due to strict habitat association. Lineages are geographically delimited by the main Amazonian rivers and the Andes, a pattern observed in studies of other understory upland forest Neotropical birds, although phylogenetic relationships and divergence times among populations are idiosyncratic.


Asunto(s)
Variación Genética , Genómica , Filogenia , Pájaros Cantores/clasificación , Pájaros Cantores/genética , Animales , Flujo Génico , Fenotipo
7.
Mol Phylogenet Evol ; 155: 107013, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33217578

RESUMEN

Target capture sequencing effectively generates molecular marker arrays useful for molecular systematics. These extensive data sets are advantageous where previous studies using a few loci have failed to resolve relationships confidently. Moreover, target capture is well-suited to fragmented source DNA, allowing data collection from species that lack fresh tissues. Herein we use target capture to generate data for a phylogeny of the avian family Pipridae (manakins), a group that has been the subject of many behavioral and ecological studies. Most manakin species feature lek mating systems, where males exhibit complex behavioral displays including mechanical and vocal sounds, coordinated movements of multiple males, and high speed movements. We analyzed thousands of ultraconserved element (UCE) loci along with a smaller number of coding exons and their flanking regions from all but one species of Pipridae. We examined three different methods of phylogenetic estimation (concatenation and two multispecies coalescent methods). Phylogenetic inferences using UCE data yielded strongly supported estimates of phylogeny regardless of analytical method. Exon probes had limited capability to capture sequence data and resulted in phylogeny estimates with reduced support and modest topological differences relative to the UCE trees, although these conflicts had limited support. Two genera were paraphyletic among all analyses and data sets, with Antilophia nested within Chiroxiphia and Tyranneutes nested within Neopelma. The Chiroxiphia-Antilophia clade was an exception to the generally high support we observed; the topology of this clade differed among analyses, even those based on UCE data. To further explore relationships within this group, we employed two filtering strategies to remove low-information loci. Those analyses resulted in distinct topologies, suggesting that the relationships we identified within Chiroxiphia-Antilophia should be interpreted with caution. Despite the existence of a few continuing uncertainties, our analyses resulted in a robust phylogenetic hypothesis of the family Pipridae that provides a comparative framework for future ecomorphological and behavioral studies.


Asunto(s)
Sitios Genéticos , Passeriformes/clasificación , Passeriformes/genética , Filogenia , Animales , Secuencia de Bases , Exones/genética , Funciones de Verosimilitud , Especificidad de la Especie
8.
Proc Natl Acad Sci U S A ; 115(2): E218-E225, 2018 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-29279398

RESUMEN

Hybrid speciation is rare in vertebrates, and reproductive isolation arising from hybridization is infrequently demonstrated. Here, we present evidence supporting a hybrid-speciation event involving the genetic admixture of the snow-capped (Lepidothrix nattereri) and opal-crowned (Lepidothrix iris) manakins of the Amazon basin, leading to the formation of the hybrid species, the golden-crowned manakin (Lepidothrix vilasboasi). We used a genome-wide SNP dataset together with analysis of admixture, population structure, and coalescent modeling to demonstrate that the golden-crowned manakin is genetically an admixture of these species and does not represent a hybrid zone but instead formed through ancient genetic admixture. We used spectrophotometry to quantify the coloration of the species-specific male crown patches. Crown patches are highly reflective white (snow-capped manakin) or iridescent whitish-blue to pink (opal-crowned manakin) in parental species but are a much less reflective yellow in the hybrid species. The brilliant coloration of the parental species results from nanostructural organization of the keratin matrix feather barbs of the crown. However, using electron microscopy, we demonstrate that the structural organization of this matrix is different in the two parental species and that the hybrid species is intermediate. The intermediate nature of the crown barbs, resulting from past admixture appears to have rendered a duller structural coloration. To compensate for reduced brightness, selection apparently resulted in extensive thickening of the carotenoid-laden barb cortex, producing the yellow crown coloration. The evolution of this unique crown-color signal likely culminated in premating isolation of the hybrid species from both parental species.


Asunto(s)
Especiación Genética , Hibridación Genética , Passeriformes/genética , Distribución Animal , Animales , Carotenoides/metabolismo , Plumas/fisiología , Femenino , Estudio de Asociación del Genoma Completo , Queratinas/fisiología , Masculino , Passeriformes/fisiología , Polimorfismo de Nucleótido Simple , Caracteres Sexuales , Sudáfrica , América del Sur
9.
Proc Biol Sci ; 287(1919): 20192400, 2020 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-31964299

RESUMEN

To elucidate the relationships and spatial range evolution across the world of the bird genus Turdus (Aves), we produced a large genomic dataset comprising ca 2 million nucleotides for ca 100 samples representing 53 species, including over 2000 loci. We estimated time-calibrated maximum-likelihood and multispecies coalescent phylogenies and carried out biogeographic analyses. Our results indicate that there have been considerably fewer trans-oceanic dispersals within the genus Turdus than previously suggested, such that the Palaearctic clade did not originate in America and the African clade was not involved in the colonization of the Americas. Instead, our findings suggest that dispersal from the Western Palaearctic via the Antilles to the Neotropics might have occurred in a single event, giving rise to the rich Neotropical diversity of Turdus observed today, with no reverse dispersals to the Palaearctic or Africa. Our large multilocus dataset, combined with dense species-level sampling and analysed under probabilistic methods, brings important insights into historical biogeography and systematics, even in a scenario of fast and spatially complex diversification.


Asunto(s)
Evolución Biológica , Filogeografía , Pájaros Cantores/fisiología , Animales , Filogenia
10.
Syst Biol ; 68(1): 32-46, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29771371

RESUMEN

Advances in high-throughput sequencing techniques now allow relatively easy and affordable sequencing of large portions of the genome, even for nonmodel organisms. Many phylogenetic studies reduce costs by focusing their sequencing efforts on a selected set of targeted loci, commonly enriched using sequence capture. The advantage of this approach is that it recovers a consistent set of loci, each with high sequencing depth, which leads to more confidence in the assembly of target sequences. High sequencing depth can also be used to identify phylogenetically informative allelic variation within sequenced individuals, but allele sequences are infrequently assembled in phylogenetic studies. Instead, many scientists perform their phylogenetic analyses using contig sequences which result from the de novo assembly of sequencing reads into contigs containing only canonical nucleobases, and this may reduce both statistical power and phylogenetic accuracy. Here, we develop an easy-to-use pipeline to recover allele sequences from sequence capture data, and we use simulated and empirical data to demonstrate the utility of integrating these allele sequences to analyses performed under the multispecies coalescent model. Our empirical analyses of ultraconserved element locus data collected from the South American hummingbird genus Topaza demonstrate that phased allele sequences carry sufficient phylogenetic information to infer the genetic structure, lineage divergence, and biogeographic history of a genus that diversified during the last 3 myr. The phylogenetic results support the recognition of two species and suggest a high rate of gene flow across large distances of rainforest habitats but rare admixture across the Amazon River. Our simulations provide evidence that analyzing allele sequences leads to more accurate estimates of tree topology and divergence times than the more common approach of using contig sequences.


Asunto(s)
Alelos , Clasificación/métodos , Secuencia Conservada/genética , Filogenia , Animales , Aves/clasificación , Aves/genética , Simulación por Computador , Ecosistema
11.
Nature ; 515(7527): 406-9, 2014 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-25209666

RESUMEN

Since the recognition that allopatric speciation can be induced by large-scale reconfigurations of the landscape that isolate formerly continuous populations, such as the separation of continents by plate tectonics, the uplift of mountains or the formation of large rivers, landscape change has been viewed as a primary driver of biological diversification. This process is referred to in biogeography as vicariance. In the most species-rich region of the world, the Neotropics, the sundering of populations associated with the Andean uplift is ascribed this principal role in speciation. An alternative model posits that rather than being directly linked to landscape change, allopatric speciation is initiated to a greater extent by dispersal events, with the principal drivers of speciation being organism-specific abilities to persist and disperse in the landscape. Landscape change is not a necessity for speciation in this model. Here we show that spatial and temporal patterns of genetic differentiation in Neotropical birds are highly discordant across lineages and are not reconcilable with a model linking speciation solely to landscape change. Instead, the strongest predictors of speciation are the amount of time a lineage has persisted in the landscape and the ability of birds to move through the landscape matrix. These results, augmented by the observation that most species-level diversity originated after episodes of major Andean uplift in the Neogene period, suggest that dispersal and differentiation on a matrix previously shaped by large-scale landscape events was a major driver of avian speciation in lowland Neotropical rainforests.


Asunto(s)
Aves/clasificación , Aves/genética , Especiación Genética , Filogenia , Bosque Lluvioso , Clima Tropical , Animales , Biodiversidad , Modelos Biológicos , Datos de Secuencia Molecular , Panamá , Ríos , América del Sur
12.
Mol Phylogenet Evol ; 140: 106581, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31430551

RESUMEN

Dendrocincla woodcreepers are ant-following birds widespread throughout tropical America. Species in the genus are widely distributed and show little phenotypic variation. Notwithstanding, several subspecies have been described, but the validity of some of these taxa and the boundaries among them have been discussed for decades. Recent genetic evidence based on limited sampling has pointed to the paraphyly of D. fuliginosa, showing that its subspecies constitute a complex that also includes D. anabatina and D. turdina. In this study we sequenced nuclear and mitochondrial markers for over two hundred individuals belonging to the D. fuliginosa complex to recover phylogenetic relationships, describe intraspecific genetic diversity and provide historical biogeographic scenarios of diversification. Our results corroborate the paraphyly of D. fuliginosa, with D. turdina and D. anabatina nested within its recognized subspecies. Recovered genetic lineages roughly match the distributions of described subspecies and congruence among phylogenetic structure, phenotypic diagnosis and distribution limits were used to discuss current systematics and taxonomy within the complex, with special attention to Northern South America. Our data suggest the origin of the complex in western Amazonia, associated with the establishment of upland forests in the area during the early Pliocene. Paleoclimatic cycles and river rearrangements during the Pleistocene could have, at different times, both facilitated dispersal across large Amazonian rivers and the Andes and isolated populations, likely playing an important role in differentiation of extant species. Previously described hybridization in the headwaters of the Tapajós river represents a secondary contact of non-sister lineages that cannot be used to test the role of the river as primary source of diversification. Based on comparisons of D. fuliginosa with closely related understory upland forest taxa, we suggest that differential habitat use could influence diversification processes in a historically changing landscape, and should be considered for proposing general mechanisms of diversification.


Asunto(s)
Biodiversidad , Geografía , Passeriformes/clasificación , Animales , Secuencia de Bases , Teorema de Bayes , Brasil , Núcleo Celular/genética , ADN Mitocondrial/genética , Bosques , Sitios Genéticos , Variación Genética , Haplotipos/genética , Passeriformes/genética , Filogenia , Filogeografía , Análisis de Secuencia de ADN , Especificidad de la Especie
13.
Mol Phylogenet Evol ; 133: 198-213, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30660755

RESUMEN

We evaluated whether the Andean and the Atlantic forests acted as refugia during the Quaternary, and tested biogeographic hypotheses about the regions involved in the connectivity between those biomes (through the Chaco or the Cerrado). To achieve these goals we selected the Buff-browed Foliage-gleaner Syndactyla rufosuperciliata (Aves, Furnariidae) as a study system, a taxon distributed between the Andean and Atlantic forest. We first explored the historical connectivity between regions through niche modeling. We subsequently used DNA sequences (n = 71 individuals) and genomic analyses (ddRADseq, n = 33 individuals) to evaluate population genetic structure and gene flow within this species. Finally, we performed population model selection using Approximate Bayesian Computation. Our findings indicate that the Andean and the Atlantic forests acted as refugia, and that the populations of the focal species from both regions contacted through the Cerrado region, thus suggesting that the historical dynamics of Andean and Atlantic forests are important for the evolution of forest birds in the region. The results are in agreement with studies of other organisms and may indicate a more general pattern of connectivity among biomes in the Neotropics. Finally, we recommend recognizing both the Andean and the Altantic forests lineages of S. rufosuperciliata as independent species.


Asunto(s)
Ecosistema , Bosques , Passeriformes/clasificación , Filogeografía , Animales , Teorema de Bayes , Flujo Génico , Variación Genética , Genética de Población , Passeriformes/genética , Filogenia , Densidad de Población , Análisis de Secuencia de ADN
14.
Syst Biol ; 67(4): 700-718, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29385563

RESUMEN

Before populations become independent evolutionary lineages, the effects of micro evolutionary processes tend to generate complex scenarios of diversification that may affect phylogenetic reconstruction. Not accounting for gene flow in species tree estimates can directly impact topology, effective population sizes and branch lengths, and the resulting estimation errors are still poorly understood in wild populations. In this study, we used an integrative approach, including sequence capture of ultra-conserved elements (UCEs), mtDNA Sanger sequencing and morphological data to investigate species limits and phylogenetic relationships in face of gene flow in an Amazonian endemic species (Myrmoborus lugubris: Aves). We used commonly implemented species tree and model-based approaches to understand the potential effects of gene flow in phylogenetic reconstructions. The genetic structure observed was congruent with the four recognized subspecies of M. lugubris. Morphological and UCEs data supported the presence of a wide hybrid zone between M. l. femininus from the Madeira river and M. l. lugubris from the Middle and lower Amazon river, which were recovered as sister taxa by species tree methods. When fitting gene flow into simulated demographic models with different topologies, the best-fit model indicated these two taxa as non-sister lineages, a finding that is in agreement with the results of mitochondrial and morphological analyses. Our results demonstrated that failing to account for gene flow when estimating phylogenies at shallow divergence levels can generate topological uncertainty, which can nevertheless be statistically well supported, and that model testing approaches using simulated data can be useful tools to test alternative phylogenetic hypotheses.


Asunto(s)
Evolución Molecular , Flujo Génico , Especiación Genética , Passeriformes/clasificación , Filogenia , Animales , Brasil , ADN Mitocondrial/análisis , Genotipo , Modelos Genéticos , Passeriformes/genética , Fenotipo
15.
An Acad Bras Cienc ; 91(suppl 3): e20190218, 2019 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-31411243

RESUMEN

Amazonia has been a focus of interest since the early days of biogeography as an intrinsically complex and extremely diverse region. This region comprises an intricate mosaic that includes diverse types of forest formations, flooded environments and open vegetation. Increased knowledge about the distribution of species in Amazonia has led to the recognition of complex biogeographic patterns. The confrontation of these biogeographic patterns with information on the geological and climatic history of the region has generated several hypotheses dedicated to explain the origin of the biological diversity. Genomic information, coupled with knowledge of Earth's history, especially the evolution of the Amazonian landscape, presents fascinating possibilities for understanding the mechanisms that govern the origin and maintenance of diversity patterns in one of the most diverse regions of the world. For this we will increasingly need more intense and coordinated interactions between researchers studying biotic diversification and the evolution of landscapes. From the interaction between these two fields of knowledge that are in full development, an increasingly detailed understanding of the historical mechanisms related to the origin of the species will surely arise.


Asunto(s)
Biodiversidad , Evolución Biológica , Aves/clasificación , Filogeografía , Animales , Brasil , Ecosistema
16.
Proc Biol Sci ; 285(1874)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29514967

RESUMEN

We possess limited understanding of how speciation unfolds in the most species-rich region of the planet-the Amazon basin. Hybrid zones provide valuable information on the evolution of reproductive isolation, but few studies of Amazonian vertebrate hybrid zones have rigorously examined the genome-wide underpinnings of reproductive isolation. We used genome-wide genetic datasets to show that two deeply diverged, but morphologically cryptic sister species of forest understorey birds show little evidence for prezygotic reproductive isolation, but substantial postzygotic isolation. Patterns of heterozygosity and hybrid index revealed that hybrid classes with heavily recombined genomes are rare and closely match simulations with high levels of selection against hybrids. Genomic and geographical clines exhibit a remarkable similarity across loci in cline centres, and have exceptionally narrow cline widths, suggesting that postzygotic isolation is driven by genetic incompatibilities at many loci, rather than a few loci of strong effect. We propose Amazonian understorey forest birds speciate slowly via gradual accumulation of postzygotic genetic incompatibilities, with prezygotic barriers playing a less important role. Our results suggest old, cryptic Amazonian taxa classified as subspecies could have substantial postzygotic isolation deserving species recognition and that species richness is likely to be substantially underestimated in Amazonia.


Asunto(s)
Especiación Genética , Genoma , Passeriformes/fisiología , Aislamiento Reproductivo , Animales , Brasil , Femenino , Masculino , Passeriformes/anatomía & histología , Passeriformes/genética
17.
Mol Ecol ; 27(20): 4108-4120, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30129256

RESUMEN

Establishing links between phenotypic and genotypic variation is a central goal of evolutionary biology, as they might provide important insights into evolutionary processes shaping genetic and species diversity in nature. One of the more intriguing possibilities is when no genetic divergence is found to be associated with conspicuous phenotypic divergence. In that case, speciation theory predicts that phenotypic divergence may still occur in the presence of significant gene flow-thereby resulting in little genomic divergence-when genetic loci underpinning phenotypes are under strong divergent selection. However, a finding of phenotypic distinctiveness with weak or no population genetic structure may simply result from low statistical power to detect shallow genetic divergences when small data sets are used. Here, we used a subgenomic data set of 2,386 ultraconserved elements to explore genomewide divergence between two species of Antilophia manakins, which are phenotypically distinct yet evidently lack strong genetic differentiation according to previous studies based on a limited number of loci. Our results revealed clear population structure that matches the two phenotypes, supporting the idea that smaller data sets lacked the power to detect this recent divergence event (likely <100 k ya). Indeed, we found little or no introgression between the species, as well as evidence of genomewide divergence. One implication of our study is that the Araripe plateau may be a hot spot of cryptic-diverging forest Cerrado populations. Besides their use in biogeography, subgenomic data sets may help redefine local conservation programmes by revealing cryptic population structure that may be key to population management.


Asunto(s)
Passeriformes/genética , Animales , Flujo Génico/genética , Variación Genética/genética , Genética de Población , Genotipo , Haplotipos/genética , Passeriformes/clasificación , Fenotipo , Filogeografía
18.
Mol Phylogenet Evol ; 127: 706-711, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29906610

RESUMEN

Chiroxiphia and Antilophia manakins are recognized as closely related genera. Nonetheless, Chiroxiphia has been recovered as paraphyletic in some studies with limited taxonomic coverage. This genus currently comprises five species, although this arrangement is still unsettled. Chiroxiphia pareola is the most widespread species, with four recognized subspecies, but their taxonomic status are also uncertain. Finally, the phylogenetic relationships amongst the majority of Chiroxiphia and Antilophia taxa are unknown. Here, we use multilocus DNA sequences from multiple individuals of all currently accepted species and subspecies of both genera to infer their phylogenetic relationships and its implications on their classification. Our results suggest Chiroxiphia, as currently defined, is a paraphyletic group, since C. boliviana is more closely related to Antilophia than to the remaining Chiroxiphia taxa. Within C. pareola, our results support that C. p. regina and C. p. napensis should be treated as independent species. We found three divergent clades in C. p. pareola likely corresponding to distinct subspecies: one in which the isolated and endemic Tobago Island C. p. atlantica individuals are grouped with C. p. pareola from the north bank of the lower Amazon River; and two sister clades comprising individuals distributed south of the Amazon river, and those from the Atlantic Forest.


Asunto(s)
Passeriformes/clasificación , Filogenia , Animales , Geografía , Funciones de Verosimilitud , Especificidad de la Especie
19.
Mol Phylogenet Evol ; 120: 375-389, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29233706

RESUMEN

We infer phylogenetic relationships, divergence times, and the diversification history of the avian Neotropical antpitta genera Hylopezus and Myrmothera (Grallariidae), based on sequence data (3,139 base pairs) from two mitochondrial (ND2 and ND3) and three nuclear nuclear introns (TGFB2, MUSK and FGB-I5) from 142 individuals of the 12 currently recognized species in Hylopezus and Myrmothera and 5 outgroup species. Phylogenetic analyses recovered 19 lineages clustered into two major clades, both distributed in Central and South America. Hylopezus nattereri, previously considered a subspecies of H. ochroleucus, was consistently recovered as the most divergent lineage within the Grallaricula/Hylopezus/Myrmothera clade. Ancestral range estimation suggested that modern lowland antpittas probably originated in the Amazonian Sedimentary basin during the middle Miocene, and that most lineages within the Hylopezus/Myrmothera clade appeared in the Plio-Pleistocene. However, the rate of diversification in the Hylopezus/Myrmothera clade appeared to have remained constant through time, with no major shifts over the 20 million years. Although the timing when most modern lineages of the Hylopezus/Myrmothera clade coincides with a period of intense landscape changes in the Neotropics (Plio-Pleistocene), the absence of any significant shifts in diversification rates over the last 20 million years challenges the view that there is a strict causal relationship between intensification of landscape changes and cladogenesis. The relative old age of the Hylopezus/Myrmothera clade coupled with an important role ascribed to dispersal for its diversification, favor an alternative scenario whereby long-term persistence and dispersal across an ever-changing landscape might explain constant rates of cladogenesis through time.


Asunto(s)
Passeriformes/clasificación , Animales , Biodiversidad , ADN Mitocondrial/química , ADN Mitocondrial/clasificación , ADN Mitocondrial/genética , Variación Genética , Intrones , Passeriformes/genética , Filogenia , Filogeografía , Análisis de Secuencia de ADN , América del Sur , Factor de Crecimiento Transformador beta2/clasificación , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta2/metabolismo
20.
Mol Phylogenet Evol ; 126: 45-57, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29551521

RESUMEN

The New World avian family Polioptilidae (gnatcatchers and gnatwrens) is distributed from Argentina to Canada and includes 15 species and more than 60 subspecies. No study to date has evaluated phylogenetic relationships within this family and the historical pattern of diversification within the group remains unknown. Moreover, species limits, particularly in widespread taxa that show geographic variation, remain unclear. In this study, we delimited species and estimated phylogenetic relationships using multilocus data for the entire family. We then used the inferred diversity along with alternative taxonomic classification schemes to evaluate how lumping and splitting of both taxa and geographical areas influenced biogeographic inference. Species-tree analyses grouped Polioptilidae into four main clades: Microbates, Ramphocaenus, a Polioptila guianensis complex, and the remaining members of Polioptila. Ramphocaenus melanurus was sister to the clade containing M. cinereiventris and M. collaris, which formed a clade sister to all species within Polioptila. Polioptila was composed of two clades, the first of which included the P. guianensis complex; the other contained all remaining species in the genus. Using multispecies coalescent modeling, we inferred a more than 3-fold increase in species diversity, of which 87% represent currently recognized species or subspecies. Much of this diversity corresponded to subspecies that occur in the Neotropics. We identified three polyphyletic species, and delimited 4-6 previously undescribed candidate taxa. Probabilistic modeling of geographic ranges on the species tree indicated that the family likely had an ancestral origin in South America, with all three genera independently colonizing North America. Support for this hypothesis, however, was sensitive to the taxonomic classification scheme used and the number of geographical areas allowed. Our study proposes the first phylogenetic hypothesis for Polioptilidae and provides genealogical support for the reclassification of species limits. Species limits and the resolution of geographical areas that taxa inhabit influence the inferred spatial diversification history.


Asunto(s)
Passeriformes/clasificación , Filogeografía , Animales , Teorema de Bayes , ADN Mitocondrial/genética , Passeriformes/genética , Filogenia , Probabilidad , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda