Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Exp Appl Acarol ; 70(3): 309-327, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27502113

RESUMEN

Bacteria associated with mites influence their fitness, nutrition and reproduction. Previously, we found Solitalea-like (Sphingobacteriales) and Candidatus Cardinium (Cytophagales) bacteria in the stored product mite Acarus siro L. by cloning and using pyrosequencing. In this study, taxon-specific primers targeting 16S rRNA gene were used to detect and quantify the bacteria in mites and eggs of three A. siro populations. The specific probes for fluorescent in situ hybridization (FISH) were used to localize Solitalea-like and Cardinium bacteria in mite bodies. The population growth as an indirect estimator of fitness was used to describe the mite-bacteria interactions on (1) control diet; (2) rifampicin supplemented diet; (3) tetracycline supplemented diet; (4) rifampicin pretreated mites; (5) tetracycline pretreated mites. Solitalea-like 16S rRNA gene sequences from A. siro formed a separate cluster together with sequences from Tyrophagus putrescentiae. qPCR analysis indicated that number of Solitalea-like bacteria 16S rRNA gene copies was ca. 100× higher than that of Cardinium and the numbers differed between populations. FISH analysis localized Solitalea-like bacteria in the parenchymal tissues, mesodeum and food bolus of larvae, nymphs and adults. Solitalea-like, but not Cardinium bacteria were detected by taxon-specific primers in mites and eggs of all three investigated populations. None of the antibiotic treatments eliminated Solitalea-like bacteria in the A. siro populations tested. Rifampicin pretreatment significantly decreased the population growth. The numbers of Solitalea-like bacteria did not correlate with the population growth as a fitness indicator. This study demonstrated that A. siro can host Solitalea-like bacteria either alone or together with Cardinium. We suggest that Solitalea-like bacteria are shared by vertical transfer in A. siro populations.


Asunto(s)
Acaridae/microbiología , Bacteroidetes/fisiología , Aptitud Genética , Acaridae/crecimiento & desarrollo , Alimentación Animal/análisis , Animales , Antibacterianos/farmacología , Bacteroidetes/clasificación , Bacteroidetes/genética , ADN Bacteriano/genética , Femenino , Hibridación Fluorescente in Situ , Larva/crecimiento & desarrollo , Larva/microbiología , Masculino , Ninfa/crecimiento & desarrollo , Ninfa/microbiología , ARN Ribosómico 16S/genética , Simbiosis
2.
Int J Parasitol ; 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38992783

RESUMEN

Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.

3.
Exp Appl Acarol ; 49(1-2): 3-13, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19609686

RESUMEN

Mites can be found in all imaginable terrestrial habitats, in freshwater, and in salt water. Mites can be found in our houses and furnishings, on our clothes, and even in the pores of our skin-almost every single person carries mites. Most of the time, we are unaware of them because they are small and easily overlooked, and-most of the time-they do not cause trouble. In fact, they may even proof useful, for instance in forensics. The first arthropod scavengers colonising a dead body will be flies with phoretic mites. The flies will complete their life cycle in and around the corpse, while the mites may feed on the immature stages of the flies. The mites will reproduce much faster than their carriers, offering themselves as valuable timeline markers. There are environments where insects are absent or rare or the environmental conditions impede their access to the corpse. Here, mites that are already present and mites that arrive walking, through air currents or material transfer become important. At the end of the ninetieth century, the work of Jean Pierre Mégnin became the starting point of forensic acarology. Mégnin documented his observations in 'La Faune des Cadavres' [The Fauna of Carcasses]. He was the first to list eight distinct waves of arthropods colonising human carcasses. The first wave included flies and mites, the sixth wave was composed of mites exclusively. The scope of forensic acarology goes further than mites as indicators of time of death. Mites are micro-habitat specific and might provide evidential data on movement or relocation of bodies, or locating a suspect at the scene of a crime. Because of their high diversity, wide occurrence, and abundance, mites may be of great value in the analysis of trace evidence.


Asunto(s)
Entomología , Ciencias Forenses , Relaciones Interprofesionales , Ácaros/fisiología , Animales , Crimen , Femenino , Humanos , Estadios del Ciclo de Vida , Masculino , Cambios Post Mortem , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda