Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant J ; 84(2): 267-82, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26303297

RESUMEN

We studied the role of Arabidopsis thaliana TCP15, a member of the TEOSINTE BRANCHED1-CYCLOIDEA-PCF (TCP) transcription factor family, in gynoecium development. Plants that express TCP15 from the 35S CaMV promoter (35S:TCP15) develop flowers with defects in carpel fusion and a reduced number of stigmatic papillae. In contrast, the expression of TCP15 fused to a repressor domain from its own promoter causes the development of outgrowths topped with stigmatic papillae from the replum. 35S:TCP15 plants show lower levels of the auxin indoleacetic acid and reduced expression of the auxin reporter DR5 and the auxin biosynthesis genes YUCCA1 and YUCCA4, suggesting that TCP15 is a repressor of auxin biosynthesis. Treatment of plants with cytokinin enhances the developmental effects of expressing TCP15 or its repressor form. In addition, treatment of a knock-out double mutant in TCP15 and the related gene TCP14 with cytokinin causes replum enlargement, increased development of outgrowths, and the induction of the auxin biosynthesis genes YUCCA1 and YUCCA4. A comparison of the phenotypes observed after cytokinin treatment of plants with altered expression levels of TCP15 and auxin biosynthesis genes suggests that TCP15 modulates gynoecium development by influencing auxin homeostasis. We propose that the correct development of the different tissues of the gynoecium requires a balance between auxin levels and cytokinin responses, and that TCP15 participates in a feedback loop that helps to adjust this balance.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Factores de Transcripción/genética
2.
Pest Manag Sci ; 72(8): 1585-94, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26593446

RESUMEN

BACKGROUND: Southern green stink bugs (Nezara viridula L.) invade field-grown soybean crops, where they feed on developing seeds and inject phytotoxic saliva, which causes yield reduction. Although leaf responses to herbivory are well studied, no information is available about the regulation of defences in seeds. RESULTS: This study demonstrated that mitogen-activated protein kinases MPK3, MPK4 and MPK6 are expressed and activated in developing seeds of field-grown soybean and regulate a defensive response after stink bug damage. Although 10-20 min after stink bug feeding on seeds induced the expression of MPK3, MPK6 and MPK4, only MPK6 was phosphorylated after damage. Herbivory induced an early peak of jasmonic acid (JA) accumulation and ethylene (ET) emission after 3 h in developing seeds, whereas salicylic acid (SA) was also induced early, and at increasing levels up to 72 h after damage. Damaged seeds upregulated defensive genes typically modulated by JA/ET or SA, which in turn reduced the activity of digestive enzymes in the gut of stink bugs. Induced seeds were less preferred by stink bugs. CONCLUSION: This study shows that stink bug damage induces seed defences, which is perceived early by MPKs that may activate defence metabolic pathways in developing seeds of field-grown soybean. © 2015 Society of Chemical Industry.


Asunto(s)
Glycine max/enzimología , Herbivoria/fisiología , Heterópteros/fisiología , Animales , Ciclopentanos/metabolismo , Etilenos/metabolismo , Conducta Alimentaria , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Semillas/enzimología , Semillas/genética , Semillas/parasitología , Glycine max/genética , Glycine max/parasitología
3.
Plant Physiol Biochem ; 102: 133-40, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26934102

RESUMEN

Seed germination and dormancy are tightly regulated by hormone metabolism and signaling pathway. We investigated the endogenous content of abscisic acid (ABA), its catabolites, and gibberellins (GAs), as well as the expression level of certain ABA and GAs metabolic and signaling genes in embryo of dry and imbibed cypselas of inbred sunflower (Helianthus annuus L., Asteraceae) lines: B123 (dormant) and B91 (non-dormant). Under our experimental conditions, the expression of RGL2 gene might be related to the ABA peak in B123 line at 3 h of imbibition. Indeed, RGL2 transcripts are absent in dry and early embedded cypselas of the non-dormant line B91. ABA increase was accompanied by a significant ABA-Glucosyl ester (ABA-GE) and phaseic acid (PA) (two ABA catabolites) decrease in B123 line (3 h) which indicates that ABA metabolism seems to be more active in this line, and that it would be involved in the imposition and maintenance of sunflower seed dormancy, as it has been reported for many species. Finally, an increase of bioactive GAs (GA1 and GA3) occurs at 12 h of imbibition in both lines after a decrease in ABA content. This study shows the first report about the RGL2 tissue-specific gene expression in sunflower inbred lines with contrasting dormancy level. Furthermore, our results provide evidence that ABA and GAs content and differential expression of metabolism and signaling genes would be interacting in seed dormancy regulation through a mechanism of action related to embryo itself.


Asunto(s)
Regulación de la Expresión Génica de las Plantas/fisiología , Helianthus/metabolismo , Endogamia , Latencia en las Plantas/fisiología , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Helianthus/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda