Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant Mol Biol ; 114(4): 81, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38940986

RESUMEN

In higher plants, the shift from vegetative to reproductive development is governed by complex interplay of internal and external signals. TERMINALFLOWER1 (TFL1) plays a crucial role in the regulation of flowering time and inflorescence architecture in Arabidopsis thaliana. This study aimed to explore the function of BdRCN4, a homolog of TFL1 in Brachypodium distachyon, through functional analyses in mutant and transgenic plants. The results revealed that overexpression of BdRCN4 in B. distachyon leads to an extended vegetative phase and reduced production of spikelets. Similar results were found in A. thaliana, where constitutive expression of BdRCN4 promoted a delay in flowering time, followed by the development of hypervegetative shoots, with no flowers or siliques produced. Our results suggest that BdRCN4 acts as a flowering repressor analogous to TFL1, negatively regulating AP1, but no LFY expression. To further validate this hypothesis, a 35S::LFY-GR co-transformation approach on 35::BdRCN4 lines was performed. Remarkably, AP1 expression levels and flower formation were restored to normal in co-transformed plants when treated with dexamethasone. Although further molecular studies will be necessary, the evidence in B. distachyon support the idea that a balance between LFY and BdRCN4/TFL1 seems to be essential for activating AP1 expression and initiating floral organ identity gene expression. This study also demonstrates interesting conservation through the molecular pathways that regulate flowering meristem transition and identity across the evolution of monocot and dicot plants.


Asunto(s)
Brachypodium , Flores , Regulación de la Expresión Génica de las Plantas , Meristema , Proteínas de Plantas , Plantas Modificadas Genéticamente , Brachypodium/genética , Brachypodium/crecimiento & desarrollo , Meristema/genética , Meristema/crecimiento & desarrollo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Flores/genética , Flores/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
2.
Protoplasma ; 261(2): 377-393, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37910229

RESUMEN

Commelina erecta is a successful weed species. The aims of this study were to analyse the morpho-anatomy of the fruit and dimorphic seeds of the weed C. erecta, the dynamics and type of dormancy, and water entry. Flowers and fruits at different development stages were processed using standard anatomical techniques. Besides, experiments of imbibition, germinability and water entry were performed on both seed types. In the fruit of C. erecta, free and coated seeds are developed within dehiscent and indehiscent carpels, respectively. Dehiscent carpels open through a region of mechanical weakness in the dorsal vascular bundle. This region does not form in the indehiscent carpel. The main anatomical differences between the two seed types were observed in the testa and in the number of covering layers. Imbibition experiments showed that the covering of both seed types is water permeable, so these seeds lack physical dormancy and may exhibit physiological dormancy. Germinability experiments showed that the dormancy in free seeds is variable throughout the reproductive season, whereas, in coated seeds, it is high throughout the reproductive season. The embryotega is an area where the hardness of the seed coat is interrupted and facilitates water entry. Differences in the morpho-anatomy of carpels result in the formation of dimorphic seeds with different covering layers and different germination properties. These different properties allow some seeds germinate immediately after falling from the mother plant, and others to be incorporated into the seed bank. These results are useful for designing weed management strategies in agroecosystems.


Asunto(s)
Commelina , Frutas , Semillas , Agua , Germinación/fisiología , Latencia en las Plantas/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda