Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Nat Prod ; 87(4): 664-674, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38362867

RESUMEN

We report the molecular mechanism of action of gausemycins and the isolation of new members of the family, gausemycins C (1c), D (1d), E (1e), and F (1f), the minor components of the mixture. To elucidate the mechanism of action of gausemycins, we investigated the antimicrobial activity of the most active compounds, gausemycins A and B, in the presence of Ca2+, other metal ions, and phosphate. Gausemycins require a significantly higher Ca2+ concentration for maximum activity than daptomycin but lower than that required for malacidine and cadasides. Species-specific antimicrobial activity was found upon testing against a wide panel of Gram-positive bacteria. Membranoactivity of gausemycins was demonstrated upon their interactions with model lipid bilayers and micelles. The pore-forming ability was found to be dramatically dependent on the Ca2+ concentration and the membrane lipid composition. An NMR study of gausemycin B in zwitterionic and anionic micelles suggested the putative structure of the gausemycin/membrane complex and revealed the binding of Ca2+ by the macrocyclic domain of the antibiotic.


Asunto(s)
Antibacterianos , Calcio , Bacterias Grampositivas , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/química , Calcio/metabolismo , Estructura Molecular , Bacterias Grampositivas/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Daptomicina/farmacología , Daptomicina/química , Membrana Dobles de Lípidos/química , Micelas
2.
Curr Issues Mol Biol ; 45(8): 6851-6879, 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37623252

RESUMEN

The search for new drugs has been greatly accelerated by the emergence of new viruses and drug-resistant strains of known pathogens. Nucleoside analogues (NAs) are a prospective class of antivirals due to known safety profiles, which are important for rapid repurposing in the fight against emerging pathogens. Recent improvements in research methods have revealed new unexpected details in the mechanisms of action of NAs that can pave the way for new approaches for the further development of effective drugs. This review accounts advanced techniques in viral polymerase targeting, new viral and host enzyme targeting approaches, and prodrug-based strategies for the development of antiviral NAs.

3.
Int J Mol Sci ; 24(19)2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37834006

RESUMEN

Emerging and re-emerging viruses periodically cause outbreaks and epidemics around the world, which ultimately lead to global events such as the COVID-19 pandemic. Thus, the urgent need for new antiviral drugs is obvious. Over more than a century of antiviral development, nucleoside analogs have proven to be promising agents against diversified DNA and RNA viruses. Here, we present the synthesis and evaluation of the antiviral activity of nucleoside analogs and their deglycosylated derivatives based on a hydroxybenzo[4,5]imidazo[1,2-c]pyrimidin-1(2H)-one scaffold. The antiviral activity was evaluated against a panel of structurally and phylogenetically diverse RNA and DNA viruses. The leader compound showed micromolar activity against representatives of the family Coronaviridae, including SARS-CoV-2, as well as against respiratory syncytial virus in a submicromolar range without noticeable toxicity for the host cells. Surprisingly, methylation of the aromatic hydroxyl group of the leader compound resulted in micromolar activity against the varicella-zoster virus without any significant impact on cell viability. The leader compound was shown to be a weak inhibitor of the SARS-CoV-2 RNA-dependent RNA polymerase. It also inhibited biocondensate formation important for SARS-CoV-2 replication. The active compounds may be considered as a good starting point for further structure optimization and mechanistic and preclinical studies.


Asunto(s)
Nucleósidos , Virus ARN , Humanos , Nucleósidos/farmacología , Nucleósidos/química , Antivirales/farmacología , Antivirales/química , ARN Viral , Pandemias , SARS-CoV-2 , ADN
4.
Int J Mol Sci ; 24(6)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36982208

RESUMEN

A universal approach to the construction of antibody-drug conjugates (ADCs) has been developed. It relies on periodate oxidation of naturally present glycans of immunoglobulin G, followed by oxime ligation and, optionally, copper(I)-catalyzed alkyne-azide cycloaddition for conjugation with a toxic payload. The introduction of highly absorbing cyanine dyes into the linker allows for facile determination of the drug-antibody ratio. We applied this methodology to the synthesis of cytotoxic conjugates of an antibody against the tumor-associated antigen PRAME with doxorubicin and monomethyl auristatin E (MMAE). The resultant conjugates retained their affinity to a large extent, yet their cytotoxicity in vitro varied dramatically: while the doxorubicin-based conjugate did not produce any effect on cells, the MMAE-based one demonstrated specific activity against PRAME-expressing cancer cell lines. Importantly, the latter conjugate constitutes the first reported example of a PRAME-targeting ADC.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Inmunoconjugados/farmacología , Inmunoglobulina G , Línea Celular Tumoral , Antineoplásicos/farmacología , Antineoplásicos/metabolismo , Doxorrubicina
5.
Int J Mol Sci ; 24(22)2023 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-38003673

RESUMEN

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity. Here, we report modification of the lipophilic part of the molecule, perylene, by the introduction of 4-, 8-, and 12-carbon alkyls into position 9(10) of the perylene residue. Using Friedel-Crafts acylation and Wolff-Kishner reduction, three 3-acetyl-9(10)-alkylperylenes were synthesized from perylene and used to prepare 9 nucleoside and 12 non-nucleoside amphipathic derivatives. These compounds were characterized as fluorophores and singlet oxygen generators, as well as tested as antivirals against herpes virus-1 (HSV-1) and vesicular stomatitis virus (VSV), both known for causing superficial skin/mucosa lesions and thus serving as suitable candidates for photodynamic therapy. The results suggest that derivatives with a short alkyl chain (butyl) have strong antiviral activity, whereas the introduction of longer alkyl substituents (n = 8 and 12) to the perylenyethynyl scaffold results in a dramatic reduction of antiviral activity. This phenomenon is likely attributable to the increased lipophilicity of the compounds and their ability to form insoluble aggregates. Moreover, molecular dynamic studies revealed that alkylated perylene derivatives are predominately located closer to the middle of the bilayer compared to non-alkylated derivatives. The predicted probability of superficial positioning correlated with antiviral activity, suggesting that singlet oxygen generation is achieved in the subsurface layer of the membrane, where the perylene group is more accessible to dissolved oxygen.


Asunto(s)
Herpesvirus Humano 1 , Perileno , Fotoquimioterapia , Perileno/farmacología , Oxígeno Singlete , Antivirales/farmacología , Antivirales/química , Fármacos Fotosensibilizantes/farmacología
6.
Molecules ; 28(23)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38067618

RESUMEN

Antibodies and their derivatives (scFv, Fabs, etc.) represent a unique class of biomolecules that combine selectivity with the ability to target drug delivery. Currently, one of the most promising endeavors in this field is the development of molecular diagnostic tools and antibody-based therapeutic agents, including antibody-drug conjugates (ADCs). To meet this challenge, it is imperative to advance methods for modifying antibodies. A particularly promising strategy involves the introduction of carbonyl groups into the antibody that are amenable to further modification by biorthogonal reactions, namely aliphatic, aromatic, and α-oxo aldehydes, as well as aliphatic and aryl-alkyl ketones. In this review, we summarize the preparation methods and applications of site-specific antibody conjugates that are synthesized using this approach.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Anticuerpos , Inmunoconjugados/uso terapéutico , Antígenos , Sistemas de Liberación de Medicamentos , Antineoplásicos/uso terapéutico
7.
Molecules ; 28(1)2023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36615611

RESUMEN

Fluorescent antibodies have proved to be an invaluable tool for molecular biology and diagnostics. They are routinely produced by modification of lysine residues, which leads to high heterogeneity. As such, their affinity may be compromised if the antigen-binding site is affected, the probability of which increases along with the degree of labeling. In this work, we propose a methodology for the synthesis of site-specific antibody-dye conjugates with a high degree of labeling. To this end, we synthesized two oxyamine-based branched triazide linkers and coupled them with a periodate-oxidized anti-PRAME antibody 6H8; two oxyamine-based linear monoazide linkers of similar structure were used as controls. The azide-labeled antibodies were subsequently conjugated with fluorescent dyes via SPAAC, a copper-free click reaction. Compared to their counterparts made with linear linkers, the branched conjugates possessed a higher degree of labeling. The utility of the methodology was demonstrated in the detection of the PRAME protein on the surface of the cell by flow cytometry.


Asunto(s)
Anticuerpos , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Antígenos
8.
Molecules ; 28(17)2023 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-37687107

RESUMEN

Perylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphenols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro. Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the virus into the host cell. Furthermore, these compounds demonstrate an ability to generate singlet oxygen when exposed to visible light. The rate of singlet oxygen production is positively correlated with antiviral activity, confirming that the inhibition of fusion is primarily due to singlet-oxygen-induced damage to the viral envelope. The unique combination of a shape that affords affinity to the lipid bilayer and the capacity to generate singlet oxygen makes perylenylethynylphenols highly effective scaffolds against enveloped viruses. The anticoronaviral activity of perylenylethynylphenols is strictly light-dependent and disappears in the absence of daylight (under red light). Moreover, these compounds exhibit negligible cytotoxicity, highlighting their significant potential for further exploration of the precise antiviral mechanism and the broader scope and limitations of this compound class.


Asunto(s)
COVID-19 , Oxígeno Singlete , Animales , Gatos , SARS-CoV-2 , Membranas , Antivirales/farmacología
9.
Int J Mol Sci ; 24(1)2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36613629

RESUMEN

Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes). These compounds found diverse applications in the photodynamic therapy of tumors and bacterial infections, but they are scarcely mentioned as antivirals. In this account, we aimed to evaluate the therapeutic prospects of various NIR-absorbing and singlet oxygen-generating chromophores for the development of broad-spectrum photosensitizing antivirals.


Asunto(s)
Fotoquimioterapia , Fármacos Fotosensibilizantes , Fármacos Fotosensibilizantes/farmacología , Colorantes , Antivirales/farmacología , Rayos Infrarrojos , Oxígeno Singlete
10.
Molecules ; 27(11)2022 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-35684482

RESUMEN

The application of non-planar scaffolds in drug design allows for the enlargement of the chemical space, and for the construction of molecules that have more effective target-ligand interactions or are less prone to the development of resistance. Among the works of the last decade, a literature search revealed spirothiazamenthane, which has served as a lead in the development of derivatives active against resistant viral strains. In this work, we studied the novel molecular scaffold, which resembles spirothiazamenthane, but combines isoxazoline as a heterocycle and cyclooctane ring as a hydrophobic part of the structure. The synthesis of new 3-nitro- and 3-aminoisoxazolines containing spiro-fused or 1,2-annelated cyclooctane fragments was achieved by employing 1,3-dipolar cycloaddition of 3-nitro-4,5-dihydroisoxazol-4-ol 2-oxide or tetranitromethane-derived alkyl nitronates with non-activated alkenes. A series of spiro-sulfonamides was obtained by the reaction of 3-aminoisoxazoline containing a spiro-fused cyclooctane residue with sulfonyl chlorides. Preliminary screening of the compounds for antiviral, antibacterial, antifungal and antiproliferative properties in vitro revealed 1-oxa-2-azaspiro[4.7]dodec-2-en-3-amine and 3a,4,5,6,7,8,9,9a-octahydrocycloocta[d]isoxazol-3-amine with activity against the influenza A/Puerto Rico/8/34 (H1N1) virus in the submicromolar range, and high values of selectivity index. Further study of the mechanism of the antiviral action of these compounds, and the synthesis of their analogues, is likely to identify new agents against resistant viral strains.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Gripe Humana , Aminas/uso terapéutico , Antivirales/química , Ciclooctanos , Humanos , Gripe Humana/tratamiento farmacológico , Relación Estructura-Actividad
11.
Int J Mol Sci ; 22(23)2021 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-34884647

RESUMEN

Bioconjugation of antibodies with various payloads has diverse applications across various fields, including drug delivery and targeted imaging techniques. Fluorescent immunoconjugates provide a promising tool for cancer diagnostics due to their high brightness, specificity, stability and target affinity. Fluorescent antibodies are widely used in flow cytometry for fast and sensitive identification and collection of cells expressing the target surface antigen. Nonetheless, current approaches to fluorescent labeling of antibodies most often use random modification, along with a few rather sophisticated site-specific techniques. The aim of our work was to develop a procedure for fluorescent labeling of immunoglobulin G via periodate oxidation of antibody glycans, followed by oxime ligation with fluorescent oxyamines. Here, we report a novel technique based on an in situ oxime ligation of ethoxyethylidene-protected aminooxy compounds with oxidized antibody glycans. The approach is suitable for easy modification of any immunoglobulin G, while ensuring that antigen-binding domains remain intact, thus revealing various possibilities for fluorescent probe design. The technique was used to label an antibody to PRAME, a cancer-testis protein overexpressed in a number of cancers. A 6H8 monoclonal antibody to the PRAME protein was directly modified with protected-oxyamine derivatives of fluorescein-type dyes (FAM, Alexa488, BDP-FL); the stoichiometry of the resulting conjugates was characterized spectroscopically. The immunofluorescent conjugates obtained were applied to the analysis of bone marrow samples from patients with oncohematological diseases and demonstrated high efficiency in flow cytometry quantification. The approach can be applied for the development of various immunofluorescent probes for detection of diagnostic and prognostic markers, which can be useful in anticancer therapy.


Asunto(s)
Anticuerpos Monoclonales/química , Antígenos de Neoplasias/análisis , Técnica del Anticuerpo Fluorescente/métodos , Colorantes Fluorescentes/química , Inmunoconjugados/química , Leucemia Mieloide Aguda/diagnóstico , Anticuerpos Monoclonales/inmunología , Antígenos de Neoplasias/inmunología , Médula Ósea/inmunología , Médula Ósea/metabolismo , Médula Ósea/patología , Línea Celular Tumoral , Humanos , Inmunoconjugados/inmunología , Inmunoconjugados/metabolismo , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/metabolismo
12.
Molecules ; 26(13)2021 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-34209713

RESUMEN

Antiviral action of various photosensitizers is already summarized in several comprehensive reviews, and various mechanisms have been proposed for it. However, a critical consideration of the matter of the area is complicated, since the exact mechanisms are very difficult to explore and clarify, and most publications are of an empirical and "phenomenological" nature, reporting a dependence of the antiviral action on illumination, or a correlation of activity with the photophysical properties of the substances. Of particular interest is substance-assisted photogeneration of highly reactive singlet oxygen (1O2). The damaging action of 1O2 on the lipids of the viral envelope can probably lead to a loss of the ability of the lipid bilayer of enveloped viruses to fuse with the lipid membrane of the host cell. Thus, lipid bilayer-affine 1O2 photosensitizers have prospects as broad-spectrum antivirals against enveloped viruses. In this short review, we want to point out the main types of antiviral photosensitizers with potential affinity to the lipid bilayer and summarize the data on new compounds over the past three years. Further understanding of the data in the field will spur a targeted search for substances with antiviral activity against enveloped viruses among photosensitizers able to bind to the lipid membranes.


Asunto(s)
Antivirales , Lípidos de la Membrana/metabolismo , Fármacos Fotosensibilizantes , Envoltura Viral/metabolismo , Virosis , Virus/metabolismo , Animales , Antivirales/química , Antivirales/farmacocinética , Antivirales/uso terapéutico , Humanos , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Fármacos Fotosensibilizantes/uso terapéutico , Oxígeno Singlete , Virosis/tratamiento farmacológico , Virosis/metabolismo
13.
Angew Chem Int Ed Engl ; 60(34): 18694-18703, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34009717

RESUMEN

We report a novel family of natural lipoglycopeptides produced by Streptomyces sp. INA-Ac-5812. Two major components of the mixture, named gausemycins A and B, were isolated, and their structures were elucidated. The compounds are cyclic peptides with a unique peptide core and several remarkable structural features, including unusual positions of d-amino acids, lack of the Ca2+ -binding Asp-X-Asp-Gly (DXDG) motif, tyrosine glycosylation with arabinose, presence of 2-amino-4-hydroxy-4-phenylbutyric acid (Ahpb) and chlorinated kynurenine (ClKyn), and N-acylation of the ornithine side chain. Gausemycins have pronounced activity against Gram-positive bacteria. Mechanistic studies highlight significant differences compared to known glyco- and lipopeptides. Gausemycins exhibit only slight Ca2+ -dependence of activity and induce no pore formation at low concentrations. Moreover, there is no detectable accumulation of cell wall biosynthesis precursors under treatment with gausemycins.


Asunto(s)
Lipoglucopéptidos/aislamiento & purificación , Streptomyces/química , Lipoglucopéptidos/química , Conformación Molecular
14.
Amino Acids ; 50(12): 1697-1705, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30178101

RESUMEN

4-Chloro-L-kynurenine (3-(4-chloroanthraniloyl)-L-alanine, L-4-ClKyn), an amino acid known as a prospective antidepressant, was recently for the first time found in nature in the lipopeptide antibiotic taromycin. Here, we report another instance of its identification in a natural product: 4-chloro-L-kynurenine was isolated from acidic hydrolysis of a new complex peptide antibiotic INA-5812. L-4-ClKyn is a fluorescent compound responsible for the fluorescence of the above antibiotic. Whereas fluorescence of 4-chlorokynurenine was not reported before, we synthesized the racemic compound and studied its emission in various solvents. Next, we prepared conjugates of DL-4-ClKyn with two suitable energy acceptors, BODIPY FL and 3-(phenylethynyl)perylene (PEPe), and studied fluorescence of the derivatives. 4-Chloro-DL-kynurenine emission is not detected in both conjugates, thus evidencing effective energy transfer. However, BODIPY FL emission in the conjugate is substantially reduced, probably due to collisional or photoinduced charge-transfer-mediated quenching. The intrinsic fluorescence of L-4-ClKyn amino acid in antibiotics paves the way for spectral studies of their mode of action.


Asunto(s)
Antibacterianos/química , Productos Biológicos/química , Quinurenina/análogos & derivados , Fluorescencia , Quinurenina/aislamiento & purificación
15.
Antibiotics (Basel) ; 12(8)2023 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-37627760

RESUMEN

Sensing of antibiotic-bacteria interactions is an important area of research that has gained significant attention in recent years. Antibiotic resistance is a major public health concern, and it is essential to develop new strategies for detecting and monitoring bacterial responses to antibiotics in order to maintain effective antibiotic development and antibacterial treatment. This review summarizes recent advances in sensing strategies for antibiotic-bacteria interactions, which are divided into two main parts: studies on the mechanism of action for sensitive bacteria and interrogation of the defense mechanisms for resistant ones. In conclusion, this review provides an overview of the present research landscape concerning antibiotic-bacteria interactions, emphasizing the potential for method adaptation and the integration of machine learning techniques in data analysis, which could potentially lead to a transformative impact on mechanistic studies within the field.

16.
Life (Basel) ; 13(5)2023 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-37240718

RESUMEN

Natural scaffolds remain an important basis for drug development. Therefore, approaches to natural bioactive compound discovery attract significant attention. In this account, we summarize modern and emerging trends in the screening and identification of natural antibiotics. The methods are divided into three large groups: approaches based on microbiology, chemistry, and molecular biology. The scientific potential of the methods is illustrated with the most prominent and recent results.

17.
Biochimie ; 206: 150-153, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36346253

RESUMEN

The aromatic polyketides tetracenomycins were recently found to be potent inhibitors of protein synthesis. Their binding site is located in a unique locus within the tunnel of the large ribosomal subunit. Here we report the isolation and structure elucidation of a novel natural tetracenomycin congener - O4-Me-tetracenomycin C (O4-Me-TcmC). This compound is isomeric to tetracenomycin X (TcmX), however, in contrast to TcmX, O4-Me-TcmC exhibited no antimicrobial activity and was unable to inhibit protein synthesis in vitro. Structural alignment of tetracenomycins to the binding locus from cryo-EM TcmX-70S ribosome data revealed the crucial role of the 4-hydroxyl group. These findings are important for further development of semi-synthetic tetracenomycins as potential antibacterials.


Asunto(s)
Antibacterianos , Biosíntesis de Proteínas , Antibacterianos/farmacología , Antibacterianos/química , Ribosomas , Sitios de Unión
18.
Biomolecules ; 13(11)2023 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-38002351

RESUMEN

Azacarbazoles have attracted significant interest due to their valuable properties, such as anti-pathogenic and antitumor activity. In this study, a series of structurally related tricyclic benzo[4,5]- and tertacyclic naphtho[2',1':4,5]imidazo[1,2-c]pyrimidinone derivatives with one or two positively charged tethers were synthesized and evaluated for anti-proliferative activity. Lead tetracyclic derivative 5b with two amino-bearing arms inhibited the metabolic activity of A549 lung adenocarcinoma cells with a CC50 value of 3.6 µM, with remarkable selectivity (SI = 17.3) over VA13 immortalized fibroblasts. Cell-cycle assays revealed that 5b triggers G2/M arrest without signs of apoptosis. A study of its interaction with various DNA G4s and duplexes followed by dual luciferase and intercalator displacement assays suggests that intercalation, rather than the modulation of G4-regulated oncogene expression, might contribute to the observed activity. Finally, a water-soluble salt of 5b was shown to cause no acute toxic effects, changes in mice behavior, or any decrease in body weight after a 72 h treatment at concentrations up to 20 mg/kg. Thus, 5b is a promising candidate for studies in vivo; however, further investigations are needed to elucidate its molecular target(s).


Asunto(s)
Antineoplásicos , Neoplasias Pulmonares , Animales , Ratones , Antineoplásicos/uso terapéutico , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias Pulmonares/tratamiento farmacológico , Proliferación Celular , Estructura Molecular
19.
Biochimie ; 206: 12-23, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36179940

RESUMEN

Along with bright fluorescence in the near-IR range, heptamethine carbocyanine dyes possess affinity to cancer cells. Thus, these dyes could be utilized as fluorescent labels and vectors for drug delivery as covalent conjugates with cytotoxic compounds. To test the properties, structure-activity relationship, and scope of such conjugates, we synthesized drug-dye dyads of tricarbocyanine dyes with anthracycline drug daunorubicin. We used hydrophilic zwitterionic and hydrophobic positively charged benzoindoline-benzothiazole-based heptamethine dyes as terminal alkyne derivatives and N-acylated or oxime-linked daunorubicin as azido-derivatives. These two alkynes and two azides were coupled to each other by Cu-catalyzed Huisgen-Meldal-Sharpless cycloaddition (click reaction) to afford four conjugates. Molecules based on hydrophobic dyes possess submicromolar cytotoxicity to HCT116 cells. Cytotoxicity, cell penetration, intracellular distribution, apoptosis induction and the effect of antioxidants on toxicity were evaluated. The results show that the structure of the cyanine-anthracycline conjugate (hydrophilicity/hydrophobicity, charge, linker, attachment site) is important for its biological activity, thus, expansion of the chemical space of such conjugates could provide new molecular research tools for diagnostics and therapy.


Asunto(s)
Antraciclinas , Colorantes Fluorescentes , Colorantes Fluorescentes/química , Antraciclinas/farmacología , Carbocianinas/química , Alquinos/química , Daunorrubicina/farmacología , Azidas/química , Química Clic
20.
Virus Res ; 334: 199158, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37339718

RESUMEN

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions. These compounds showed nanomolar or sub-micromolar dose-dependent anti-SARS-CoV-2 activity, and also suppressed the in vitro replication of feline coronavirus (FCoV), also termed feline infectious peritonitis virus (FIPV). Perylene compounds exhibited high affinity for liposomal and cellular membranes, and efficiently intercalated into the envelopes of SARS-CoV-2 virions, thereby blocking the viral-cell fusion machinery. Furthermore, the studied compounds were demonstrated to be potent photosensitizers, generating reactive oxygen species (ROS), and their anti-SARS-CoV-2 activities were considerably enhanced after irradiation with blue light. Our results indicated that photosensitization is the major mechanism underlying the anti-SARS-CoV-2 activity of perylene derivatives, with these compounds completely losing their antiviral potency under red light. Overall, perylene-based compounds are broad-spectrum antivirals against multiple enveloped viruses, with antiviral action based on light-induced photochemical damage (ROS-mediated, likely singlet oxygen-mediated), causing impairment of viral membrane rheology.


Asunto(s)
COVID-19 , Perileno , Animales , Gatos , Antivirales/farmacología , Antivirales/química , SARS-CoV-2 , Oxígeno Singlete , Perileno/farmacología , Envoltura Viral , Especies Reactivas de Oxígeno , Virión
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda