RESUMEN
Great efforts on metal-organic framework (MOF) derived nanostructures have been devoted to modulating the compositional and structural complexities to enhance performance in various applications. However, a facile method that can simultaneously manipulate the structures of the MOF-derived material and the chemical component remains a considerable challenge. Here we report a facile strategy to use the polyhedral ZIF-8 as a precursor for synthesizing ZIF-8-derived hybrids with different components and morphologies. The synthesis involves the preparation of ZIF-8 MOF templates and sequential covering of the ZIF-8 with a interlayer of silica and then polydopamine-Ni2+ (PDA-Ni2+) and carbonizing at different high temperatures under a nitrogen atmosphere, finally leading to ZIF-8-derived hybrids with different components and structures. In the whole process, the preliminary ZIF-8 precursor play a crucial role in the morphology and structure of the final carbonized products, which can be considered as templates for silica coating and precursors of N-doped carbon layer and Zn species. We also found that the SiO2 interlayer coating is a crucial procedure for the formation of yolk-shell structured ZIF-8@SiO2@PDA-Ni2+ composites. Owing to the uniformly distributed Ni NPs and unique structures of the composites, the as-prepared Ni-based composites show high performance in the catalysis of 4-nitrophenol as well as enrichment of histidine-rich proteins. In addition, this proposed strategy for the controllable design and synthesis of ZIF-8-derived nanocomposites paves a new way in developing superior active materials in energy storage conversion etc.
RESUMEN
A unique nanostructure of Fe3O4 nanoparticles (NPs)-in/carbon layer/out-Ni NPs was developed and proved to be an efficient catalyst and protein adsorbent. This kind of nanostructure was formed through a space-confined pyrolysis procedure using polydopamine-Ni2+ coated Fe-NTA nanowires as the precursor. A N-doped carbon interlayer derived from polydopamine (PDA) supported a large amount of Ni NPs and entrapped well-defined Fe3O4 NPs, which were obtained through reduction of Ni2+, Fe3+ by carbonized NTA groups and a PDA layer. The contributions of the unique configuration along with the high density of Ni NPs in Fe3O4@C-Ni are significant for improving catalysis and protein adsorption performance, which is expected to be a promising alternative to other conventional catalysts and protein adsorbents. Due to the unique novel nanostructure, this nanocomposite possesses a wide range of applications, not only for catalytic reactions but also for other inhomogeneous reactions.
Asunto(s)
Carbono/química , Compuestos Férricos/química , Óxido Ferrosoférrico/química , Nanopartículas de Magnetita/química , Nanoestructuras/química , Ácido Nitrilotriacético/análogos & derivados , Proteínas/química , Adsorción , Catálisis , Indoles/química , Nanocompuestos/química , Ácido Nitrilotriacético/química , Polímeros/química , PirólisisRESUMEN
A series of (hetero)arylethenesulfonyl fluorides (1-58) were synthesized and screened for their in vitro antioxidant (DPPH, ABTS and DMPD methods) and anti-inflammatory activities. The results revealed that compounds 4, 15, 16, 24, 25, 26, 38, 39, 40, and 54 exhibited excellent antioxidant activity using all the three performed antioxidant methods, which were superior to the standard antioxidants ascorbic acid and gallic acid. Compounds 6-9, 11, 18, 19, 21, 22, 30, 39, 40, 44, 45, 48-50, 54, 55 and 57 displayed promising anti-inflammatory activity, which were better than the reference drug indomethacin. Preliminary structure-activity relationship (SAR) revealed that compounds containing electron donating (OH and OCH3) groups on the phenyl ring possessed excellent antioxidant properties while compounds containing electron-withdrawing (Cl, NO2, F and Br) groups on the phenyl ring were found to be most potent anti-inflammatory agents. The presence of SO2F group played a crucial role in increases both antioxidant and anti-inflammatory activities.
Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Etilenos/farmacología , Depuradores de Radicales Libres/farmacología , Ácidos Sulfínicos/farmacología , Antiinflamatorios no Esteroideos/síntesis química , Antiinflamatorios no Esteroideos/química , Benzotiazoles/antagonistas & inhibidores , Compuestos de Bifenilo/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Eritrocitos/efectos de los fármacos , Etilenos/síntesis química , Etilenos/química , Depuradores de Radicales Libres/síntesis química , Depuradores de Radicales Libres/química , Humanos , Estructura Molecular , Fenilendiaminas/antagonistas & inhibidores , Picratos/antagonistas & inhibidores , Relación Estructura-Actividad , Ácidos Sulfínicos/síntesis química , Ácidos Sulfínicos/química , Ácidos Sulfónicos/antagonistas & inhibidoresRESUMEN
A protocol of SO2F2-mediated installation of sulfonyl fluoride onto primary amides has been developed providing a new portal to sulfur(VI) fluoride exchange (SuFEx) click chemistry. The generated molecules contain pharmaceutically important amide and -SO2F moieties for application in the discovery of new therapeutics.
RESUMEN
This study represents the most comprehensive plastome-wide comparison of nucleotide substitution rates across the three subfamilies of Fabaceae: Caesalpinioideae, Mimosoideae, and Papilionoideae. Caesalpinioid and mimosoid legumes have large, unrearranged plastomes compared with papilionoids, which exhibit varying levels of rearrangement including the loss of the inverted repeat (IR) in the IR-lacking clade (IRLC). Using 71 genes common to 39 legume taxa representing all the three subfamilies, we show that papilionoids consistently have higher nucleotide substitution rates than caesalpinioids and mimosoids, and rates in the IRLC papilionoids are generally higher than those in the IR-containing papilionoids. Unsurprisingly, this pattern was significantly correlated with growth habit as most papilionoids are herbaceous, whereas caesalpinioids and mimosoids are largely woody. Both nonsynonymous (dN) and synonymous (dS) substitution rates were also correlated with several biological features including plastome size and plastomic rearrangements such as the number of inversions and indels. In agreement with previous reports, we found that genes in the IR exhibit between three and fourfold reductions in the substitution rates relative to genes within the large single-copy or small single-copy regions. Furthermore, former IR genes in IR-lacking taxa exhibit accelerated rates compared with genes contained in the IR.
Asunto(s)
Fabaceae/genética , Genoma de Plastidios/genética , Evolución Molecular , Genoma de Planta/genética , Secuencias Invertidas Repetidas/genética , Mutación , Nucleótidos/genética , FilogeniaRESUMEN
Herein, we report an efficient and universal strategy for synthesizing a unique triple-shell structured Fe3O4@SiO2@C-Ni hybrid composite. Firstly, the Fe3O4 cores were synthesized by hydrothermal reaction, and sequentially coated with SiO2 and a thin layer of nickel-ion-doped resin-formaldehyde (RF-Ni2+) using an extended Stöber method. This was followed by carbonization to produce the Fe3O4@SiO2@C-Ni nanocomposites with metallic nickel nanoparticles embedded in an RF-derived thin graphic carbon layer. Interestingly, the thin SiO2 spacer layer between RF-Ni2+ and Fe3O4 plays a critical role on adjusting the size and density of the nickel nanoparticles on the surface of Fe3O4@SiO2 nanospheres. The detailed tailoring mechanism is explicitly discussed, and it is shown that the iron oxide core can react with the nickel nanoparticles without the SiO2 spacer layer, and the size and density of the nickel nanoparticles can be effectively controlled when the SiO2 layer exits. The multifunctional composites exhibit a significantly enhanced catalytic performance in the reduction of 4-nitrophenol (4-NP).
RESUMEN
New nanoscale zerovalent iron/carbon (nZVI/C) composites were successfully prepared via heating natural hematite and pine sawdust at 800 °C under nitrogen conditions. Characterization by SEM, XRD, FTIR, and XPS analyses indicated that the as-prepared nZVI/C composites contained a large number of reactive sites. The lack of influence of the ionic strength revealed inner-sphere complexation dominated U(VI) uptake by the nZVI/C composites. Simultaneous adsorption and reduction were involved in the uptake process of U(VI) according to the results of XPS and XANES analyses. The presence of U-C/U-U shells demonstrated that innersphere complexation and surface coprecipitation dominated the U(VI) uptake at low and high pH conditions, respectively. The uptake behaviors of U(VI) by the nZVI/C composites were fitted well by surface complexation modeling with two weak and two strong sites. The maximum uptake capacity of U(VI) by the nZVI/C composites was 186.92 mg/g at pH 4.0 and 328 K. Additionally, the nZVI/C composites presented good recyclability and recoverability for U(VI) uptake in regeneration experiments. These observations indicated that the nZVI/C composites can be considered as potential adsorbents to remove radionuclides for environmental remediation.
Asunto(s)
Contaminantes Químicos del Agua , Adsorción , Carbono , Hierro , Concentración OsmolarRESUMEN
Plasma- and chemical-grafted amidoxime/carbon nanofiber hybrids (p-AO/CNFs and c-AO/CNFs) were utilized to remove 238U(VI) and 241Am(III) from aqueous solutions, seawater, and groundwater. Characteristic results indicated more nitrogen-containing groups in p-AO/CNFs compared to c-AO/CNFs. The maximum adsorption capacities of p-AO/CNFs at pH 3.5 and T = 293 K (588.24 mg of 238U(VI)/g and 40.79 mg of 241Am(III)/g from aqueous solutions, respectively) were significantly higher than those of c-AO/CNFs (263.18 and 22.77 mg/g for 238U(VI) and 241Am(III), respectively), which indicated that plasma-grafting was a highly effective, low-cost, and environmentally friendly method. Adsorption of 238U(VI) on AO/CNFs from aqueous solutions was significantly higher than that of 238U(VI) from seawater and groundwater; moreover, AO/CNFs displayed the highest effective selectivity for 238U(VI) compared to the other radionuclides. Adsorption of 238U(VI) onto AO/CNFs created inner-sphere complexes (e.g., U-C shells) as shown by X-ray absorption fine structure analysis, which was supported by surface complexation modeling. Three inner-sphere complexes gave excellent fits to pH-edge and isothermal adsorption of 238U(VI) on the AO/CNFs. These observations are crucial for the utilization of plasma-grafted, AO-based composites in the preconcentration and immobilization of lanthanides and actinides in environmental remediation.
Asunto(s)
Nanofibras , Oximas , Adsorción , Americio , Carbono , UranioRESUMEN
Volatile organic compounds (VOCs) have posed a severe threat on both ecosystem and human health which thus have gained much attention in recent years. Nonthermal plasma (NTP) as an alternative to traditional methods has been employed to degrade VOC in the atmosphere and wastewater for its high removal efficiency (up to 100%), mild operating conditions, and environmental friendliness. This review outlined the principles of NTP production and the applications on VOC removal in different kinds of reactors, like single/double dielectric barrier discharge, surface discharge, and gliding arc discharge reactors. The combination of NTP with catalysts/oxidants was also applied for VOC degradation to further promote the energy efficiency. Further, detailed explanations were given of the effect of various important factors including input/reactor/external conditions on VOC degradation performance. The reactive species (e.g., high-energy electrons, HO·, O·, N2+, Ar+, O3, H2O2) generated in NTP discharge process have played crucial roles in decomposing VOC molecules; therefore, their variation under different parameter conditions along with the reaction mechanisms involved in these NTP technologies was emphatically explained. Finally, a conclusion of the NTP technologies was presented, and special attention was paid to future challenges for NTP technologies in VOC treatment to stimulate the advances in this topic.
Asunto(s)
Compuestos Orgánicos Volátiles , Humanos , Ecosistema , Peróxido de Hidrógeno , Catálisis , Aguas ResidualesRESUMEN
Nanoscale zero-valent iron (nZVI or Fe0) can rapidly reduce Cr(VI) contaminants in the water environment, but the agglomeration and passivation of the Fe0 system have adverse effects on its application. In this study, a novel mesoporous Santa Barbara Amorphous-15 supported Fe/Ni bimetallic composite (SBA-15@Fe/Ni) is proposed to remove Cr(VI). The proposed material can enhance the stability and removal capacity of the nZVI system. The results show that the unique six-way through-hole structure of SBA-15 provides a place for the dispersion of Fe0 particles. Meanwhile, SBA-15 effectively alleviates the accumulation of Fe0 particles. The removal efficiency of SBA-15@Fe/Ni is better than two single systems (SBA-15 and Fe/Ni). The removal efficiency of SBA-15@Fe/Ni towards Cr(VI) can reach 97.62% after 60 min at pH 4.0. SBA-15@Fe/Ni still maintains excellent performance in the presence of various competitive ions (Cl-, SO42-, CO32-, NO3-). At 298 K, the maximum removal capacity of SBA-15@Fe/Ni towards Cr(VI) is 180.99 mg/g. The possible removal process of SBA-15@Fe/Ni towards Cr(VI) is divided into the following steps: First, Cr(VI) is attracted into the vicinity of the SBA-15@Fe/Ni channel by the electrostatic attraction; Second, the reduction of Cr(VI) occurs after contacting with the Fe/Ni system, and its driving force mainly comes from nZVI and Fe(II); Furthermore, the introduction of Ni can promote Cr(VI) reduction through electron transfer and catalytic hydrogenation. In conclusion, adopting SBA-15@Fe/Ni to treat chromium contamination is an effective and promising approach.
RESUMEN
Two-step water electrolysis has been proposed to tackle the ticklish H2/O2 mixture problems in conventional alkaline water electrolysis recently. However, low buffering capacity of pure nickel hydroxide electrode as redox mediator limited practical application of two-step water electrolysis system. A high-capacity redox mediator (RM) is urgently needed to permit consecutive operation of two-step cycles and high-efficiency hydrogen evolution. Consequently, a high mass-loading cobalt-doped nickel hydroxide/active carbon cloth (NiCo-LDH/ACC) RM is synthesized via a facile electrochemical method. The proper Co doping can apparently enhance the conductivity and simultaneously remain the high-capacity of the electrode. Density functional theory results further confirms more negative values in redox potential of NiCo-LDH/ACC than Ni(OH)2/ACC on account of the charge redistribution induced by Co doping, which can prevent the parasitic O2 evolution on RM electrode during decoupled H2 evolution step. As a result, the NiCo-LDH/ACC combined the superiorities of high-capacity Ni(OH)2/ACC and high-conductivity Co(OH)2/ACC, and the NiCo-LDH/ACC with 4:1 ratio of Ni to Co presented a large specific capacitance of 33.52F/cm2 for reversible charge-discharge and high buffering capacity with two-step H2/O2 evolution duration of 1740 s at 10 mA/cm2. The necessary input voltage (2.00 V) of the whole water electrolysis was broken into two smaller ones, 1.41 and 0.38 V, for H2 and O2 production, respectively. NiCo-LDH/ACC provided a favorable electrode material for the practical application of two-step water electrolysis system.
RESUMEN
Two-step alkaline water electrolysis is considered a safe and efficient method for producing hydrogen from renewable energy. Reversal of the current polarity in a bifunctional electrocatalyst used as a gas evolution electrode (GEE) in two-step water electrolysis can generate H2/O2 at different times and in different spaces. The design of a bifunctional electrocatalyst with high durability and excellent activity is imperative to achieving continuous, safe, and pure H2 generation via two-step alkaline water electrolysis. Here, we present for the first time a novel 3D Mo-doped NiCo phosphide honeycomb electrocatalyst that was grown on nickel foam (3D Mo-NiCoP/NF) and fabricated using polystyrene as a template. The electrocatalyst exhibited extremely low overpotentials in both the hydrogen evolution reaction (HER; 117 mV at 10 mA/cm2) and the oxygen evolution reaction (OER; 344 mV at 100 mA/cm2). As a bifunctional electrocatalyst for two-step alkaline water electrolysis, the device had a 1.784 V cell voltage at 10 mA/cm2, 95% decoupling efficiency, and â¼83% energy conversion efficiency. Taken together, the use of 3D Mo-NiCoP/NF as a GEE reduced the complexity and lowered the cost of the electrolyzer. The latter could be used to construct highly competitive water-splitting systems for continuous H2 production and green energy harvesting.
RESUMEN
Peroxymonosulfate (PMS) based advanced oxidation processes have gained widespread attention in refractory antibiotics treatment. In this study, Fe3O4 nanoparticles anchored nitrogen-doped porous carbon microspheres (Fe3O4/NCMS) were synthesized and applied to PMS heterogeneous activation for doxycycline hydrochloride (DOX-H) degradation. Benefitting from synergy effects of porous carbon structure, nitrogen doping, and fine dispersion of Fe3O4 nanoparticles, Fe3O4/NCMS showed excellent DOX-H degradation efficiency within 20 min via PMS activation. Further reaction mechanisms revealed that the reactive oxygen species including hydroxyl radicals (â¢OH) and singlet oxygen (1O2) played the dominant role for DOX-H degradation. Moreover, Fe(II)/Fe(III) redox cycle also participated in the radical generation, and nitrogen-doped carbonaceous structures served as the highly active centers for non-radical pathways. The possible degradation pathways and intermediate products accompanying DOX-H degradation were also analyzed in detail. This study provides key insights into the further development of heterogeneous metallic oxides-carbon catalysts for antibiotic-containing wastewater treatment.
Asunto(s)
Carbono , Nanopartículas , Carbono/química , Doxiciclina , Compuestos Férricos/química , Nitrógeno , Microesferas , Porosidad , Peróxidos/químicaRESUMEN
Green synthesis has attracted significant attention as an eco-friendly, low-cost, energy-efficient, and non-toxic method for preparing silver nanoparticles (AgNPs) for cancer therapy. This study optimized the green synthesis of AgNPs using Olea europaea extracts and evaluated their anticancer potential. The biosynthesized AgNPs were characterized using various methods, showing stable AgNPs with a desirable morphology and high yield, improving the properties of AgNPs for various medicinal applications. The biosynthesized AgNPs were predominantly spherical, with small sizes ranging from 13 to 21 nm and highly stable at -23 and -24 mV. The findings of this study suggest that green-synthesized AgNPs using Olea europaea and sunlight possess significant anticancer activity against cancer cells in vitro. Further investigation of green synthesis would help to form high-quality AgNPs that have promising potential in treating disease and fighting undesirable pathogens.
RESUMEN
Magnetic carbon materials promise distinct advantages in the decontamination of heavy metal ions. In this work, a novel interconnected hierarchical nickel-carbon (Ni@IHC) hybrid was synthesized by combining the solvothermal method with a one-step pyrolysis under argon atmosphere. Benefitting from 3D flower-like morphology, interconnected porous nanosheets, large surface area, and abundant Ni nanoparticles, Ni@IHC hybrids can remove Cr(VI) within 25 min by using formic acid (FA) as a reductant at 25 â. Furthermore, the experimental parameters that can affect the material catalytic performance such as initial Cr(VI) concentration, catalyst dosage, FA concentration, and temperature were also investigated in detail. It was found that highly dispersed Ni nanoparticles contributed significantly to the reduction process. More importantly, the embedded Ni nanoparticles favor fast separation by a magnet and were helpful for the recycles use. This Ni@IHC hybrid was obtained by a facile and easy scale-up method, resulting in the fast transformation of Cr(VI) into Cr(III).
Asunto(s)
Carbono , Níquel , Cromo , Formiatos , PorosidadRESUMEN
This article is concerned with the H∞ state estimation problem for a class of bidirectional associative memory (BAM) neural networks with binary mode switching, where the distributed delays are included in the leakage terms. A couple of stochastic variables taking values of 1 or 0 are introduced to characterize the switching behavior between the redundant models of the BAM neural network, and a general type of neuron activation function (i.e., the sector-bounded nonlinearity) is considered. In order to prevent the data transmissions from collisions, a periodic scheduling protocol (i.e., round-robin protocol) is adopted to orchestrate the transmission order of sensors. The purpose of this work is to develop a full-order estimator such that the error dynamics of the state estimation is exponentially mean-square stable and the H∞ performance requirement of the output estimation error is also achieved. Sufficient conditions are established to ensure the existence of the required estimator by constructing a mode-dependent Lyapunov-Krasovskii functional. Then, the desired estimator parameters are obtained by solving a set of matrix inequalities. Finally, a numerical example is provided to show the effectiveness of the proposed estimator design method.
RESUMEN
A facile cascade process for directly transforming the abundant and inexpensive sulfonates (or sulfonic acids) to the highly valuable sulfonyl fluorides was developed. This new protocol features mild reaction conditions using readily available and easy-to-operate reagents. A diverse set of sulfonyl fluorides was prepared facilitating the enrichment of the sulfonyl fluoride library.
RESUMEN
A cascade dehydrogenative Morita-Baylis-Hillman reaction of the C(sp3)-H of primary alcohols with the C(sp2)-H of electron-deficient olefins for forming allylic alcohols mediated by SO2F2 was developed. This method provides a mild process for the preparation of allylic alcohol moieties without the requirement of transition metals.
RESUMEN
At present more than 250 FDA approved chlorine containing drugs were available in the market and many pharmaceutically important drug candidates in pre-clinical trials. Thus, it is quite obvious to expect that in coming decades there will be an even greater number of new chlorine-containing pharmaceuticals in market. Chlorinated compounds represent the family of compounds promising for use in medicinal chemistry. This review describes the recent advances in the synthesis of chlorine containing heterocyclic compounds as diverse biological agents and drugs in the pharmaceutical industries for the inspiration of the discovery and development of more potent and effective chlorinated drugs against numerous death-causing diseases.