Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Mol Cell ; 82(17): 3284-3298.e7, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772404

RESUMEN

Bicarbonate (HCO3-) ions maintain pH homeostasis in eukaryotic cells and serve as a carbonyl donor to support cellular metabolism. However, whether the abundance of HCO3- is regulated or harnessed to promote cell growth is unknown. The mechanistic target of rapamycin complex 1 (mTORC1) adjusts cellular metabolism to support biomass production and cell growth. We find that mTORC1 stimulates the intracellular transport of HCO3- to promote nucleotide synthesis through the selective translational regulation of the sodium bicarbonate cotransporter SLC4A7. Downstream of mTORC1, SLC4A7 mRNA translation required the S6K-dependent phosphorylation of the translation factor eIF4B. In mTORC1-driven cells, loss of SLC4A7 resulted in reduced cell and tumor growth and decreased flux through de novo purine and pyrimidine synthesis in human cells and tumors without altering the intracellular pH. Thus, mTORC1 signaling, through the control of SLC4A7 expression, harnesses environmental bicarbonate to promote anabolic metabolism, cell biomass, and growth.


Asunto(s)
Bicarbonatos , Diana Mecanicista del Complejo 1 de la Rapamicina , Nucleótidos , Simportadores de Sodio-Bicarbonato , Bicarbonatos/metabolismo , Humanos , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Nucleótidos/biosíntesis , Fosforilación , Simportadores de Sodio-Bicarbonato/genética , Simportadores de Sodio-Bicarbonato/metabolismo
2.
Mol Cell ; 81(10): 2076-2093.e9, 2021 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-33756106

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) regulates metabolism and cell growth in response to nutrient, growth, and oncogenic signals. We found that mTORC1 stimulates the synthesis of the major methyl donor, S-adenosylmethionine (SAM), through the control of methionine adenosyltransferase 2 alpha (MAT2A) expression. The transcription factor c-MYC, downstream of mTORC1, directly binds to intron 1 of MAT2A and promotes its expression. Furthermore, mTORC1 increases the protein abundance of Wilms' tumor 1-associating protein (WTAP), the positive regulatory subunit of the human N6-methyladenosine (m6A) RNA methyltransferase complex. Through the control of MAT2A and WTAP levels, mTORC1 signaling stimulates m6A RNA modification to promote protein synthesis and cell growth. A decline in intracellular SAM levels upon MAT2A inhibition decreases m6A RNA modification, protein synthesis rate, and tumor growth. Thus, mTORC1 adjusts m6A RNA modification through the control of SAM and WTAP levels to prime the translation machinery for anabolic cell growth.


Asunto(s)
Adenosina/análogos & derivados , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Biosíntesis de Proteínas , S-Adenosilmetionina/metabolismo , Adenosina/metabolismo , Animales , Secuencia de Bases , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular , Femenino , Células HEK293 , Células HeLa , Humanos , Metionina Adenosiltransferasa/genética , Metionina Adenosiltransferasa/metabolismo , Metilación , Ratones Desnudos , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Empalme de ARN/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Transducción de Señal , Transcripción Genética
3.
Mol Cell ; 78(6): 1178-1191.e6, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32485148

RESUMEN

The RAS-ERK/MAPK (RAS-extracellular signal-regulated kinase/mitogen-activated protein kinase) pathway integrates growth-promoting signals to stimulate cell growth and proliferation, at least in part, through alterations in metabolic gene expression. However, examples of direct and rapid regulation of the metabolic pathways by the RAS-ERK pathway remain elusive. We find that physiological and oncogenic ERK signaling activation leads to acute metabolic flux stimulation through the de novo purine synthesis pathway, thereby increasing building block availability for RNA and DNA synthesis, which is required for cell growth and proliferation. We demonstrate that ERK2, but not ERK1, phosphorylates the purine synthesis enzyme PFAS (phosphoribosylformylglycinamidine synthase) at T619 in cells to stimulate de novo purine synthesis. The expression of nonphosphorylatable PFAS (T619A) decreases purine synthesis, RAS-dependent cancer cell-colony formation, and tumor growth. Thus, ERK2-mediated PFAS phosphorylation facilitates the increase in nucleic acid synthesis required for anabolic cell growth and proliferation.


Asunto(s)
Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Purinas/biosíntesis , Células A549 , Animales , Ligasas de Carbono-Nitrógeno con Glutamina como Donante de Amida-N/genética , Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HeLa , Humanos , Sistema de Señalización de MAP Quinasas/fisiología , Fosforilación , Purinas/metabolismo , Transducción de Señal/fisiología , Proteínas ras/metabolismo
4.
Cell Commun Signal ; 21(1): 145, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37337283

RESUMEN

The transient receptor potential melastatin subfamily member 2 (TRPM2), a thermo and reactive oxygen species (ROS) sensitive Ca2+-permeable cation channel has a vital role in surviving the cell as well as defending the adaptability of various cell groups during and after oxidative stress. It shows higher expression in several cancers involving breast, pancreatic, prostate, melanoma, leukemia, and neuroblastoma, indicating it raises the survivability of cancerous cells. In various cancers including gastric cancers, and neuroblastoma, TRPM2 is known to conserve viability, and several underlying mechanisms of action have been proposed. Transcription factors are thought to activate TRPM2 channels, which is essential for cell proliferation and survival. In normal physiological conditions with an optimal expression of TRPM2, mitochondrial ROS is produced in optimal amounts while regulation of antioxidant expression is carried on. Depletion of TRPM2 overexpression or activity has been shown to improve ischemia-reperfusion injury in organ levels, reduce tumor growth and/or viability of various malignant cancers like breast, gastric, pancreatic, prostate, head and neck cancers, melanoma, neuroblastoma, T-cell and acute myelogenous leukemia. This updated and comprehensive review also analyzes the mechanisms by which TRPM2-mediated Ca2+ signaling can regulate the growth and survival of different types of cancer cells. Based on the discussion of the available data, it can be concluded that TRPM2 may be a unique therapeutic target in the treatment of several types of cancer. Video Abstract.


Asunto(s)
Melanoma , Neuroblastoma , Canales Catiónicos TRPM , Humanos , Calcio/metabolismo , Proliferación Celular , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo
5.
Semin Cancer Biol ; 69: 52-68, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32014609

RESUMEN

Nanotechnology is reshaping health care strategies and is expected to exert a tremendous impact in the coming years offering better healthcare facilities. It has led to not only therapeutic drug delivery feasibility but also to diagnostics. Materials in the size of nano range (1-100 nm) used in the design, fabrication, regulation, and application of therapeutic drugs or devices are classified as medical nanotechnology and nanopharmacology. Delivery of more complex molecules to the specific site of action as well as gene therapy has pushed forward the nanoparticle-based drug delivery to its maximum. Areas that benefit from nano-based drug delivery systems are cancer, diabetes, infectious diseases, neurodegenerative diseases, blood disorders and orthopedic-related ailments. Moreover, development of nanotherapeutics with multi-functionalities has a considerable potential to fill the gaps that exist in the present therapeutic domain. In cancer treatment, nanomedicines have superiority over current therapeutic practices as they can effectively deliver the drug to the affected tissues, thus reducing drug toxicities. Along this line, polymeric conjugates of asparaginase and polymeric micelles of paclitaxel have recently been recommended for the treatment of various types of cancers. Nanotechnology-based therapeutics and diagnostics provide greater effectiveness with less or no toxicity concerns. Similarly, diagnostic imaging holds promising future applications with newer nano-level imaging elements. Advancements in nanotechnology have emerged to a newer direction which use nanorobotics for various applications in healthcare. Accordingly, this review comprehensively highlights the potentialities of various nanocarriers and nanomedicines for multifaceted applications in diagnostics and drug delivery, especially the potentialities of polymeric nanoparticle, nanoemulsion, solid-lipid nanoparticle, nanostructured lipid carrier, self-micellizing anticancer lipids, dendrimer, nanocapsule and nanosponge-based therapeutic approaches in the field of cancer. Furthermore, this article summarizes the most recent literature pertaining to the use of nano-technology in the field of medicine, particularly in treating cancer patients.


Asunto(s)
Antineoplásicos/administración & dosificación , Sistemas de Liberación de Medicamentos , Nanomedicina , Nanopartículas/administración & dosificación , Neoplasias/diagnóstico , Neoplasias/tratamiento farmacológico , Animales , Humanos , Nanopartículas/química
6.
Cancer Cell Int ; 22(1): 284, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109789

RESUMEN

The PI3K-Akt-mechanistic (formerly mammalian) target of the rapamycin (mTOR) signaling pathway is important in a variety of biological activities, including cellular proliferation, survival, metabolism, autophagy, and immunity. Abnormal PI3K-Akt-mTOR signalling activation can promote transformation by creating a cellular environment conducive to it. Deregulation of such a system in terms of genetic mutations and amplification has been related to several human cancers. Consequently, mTOR has been recognized as a key target for the treatment of cancer, especially for treating cancers with elevated mTOR signaling due to genetic or metabolic disorders. In vitro and in vivo, rapamycin which is an immunosuppressant agent actively suppresses the activity of mTOR and reduces cancer cell growth. As a result, various sirolimus-derived compounds have now been established as therapies for cancer, and now these medications are being investigated in clinical studies. In this updated review, we discuss the usage of sirolimus-derived compounds and other drugs in several preclinical or clinical studies as well as explain some of the challenges involved in targeting mTOR for treating various human cancers.

7.
Cancer Cell Int ; 22(1): 246, 2022 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-35941592

RESUMEN

MAPK (mitogen-activated protein kinase) or ERK (extracellular-signal-regulated kinase) pathway is an important link in the transition from extracellular signals to intracellular responses. Because of genetic and epigenetic changes, signaling cascades are altered in a variety of diseases, including cancer. Extant studies on the homeostatic and pathologic behavior of MAPK signaling have been conducted; however, much remains to be explored in preclinical and clinical research in terms of regulation and action models. MAPK has implications for cancer therapy response, more specifically in response to experimental MAPK suppression, compensatory mechanisms are activated. The current study investigates MAPK as a very complex cell signaling pathway that plays roles in cancer treatment response, cellular normal conduit maintenance, and compensatory pathway activation. Most MAPK inhibitors, unfortunately, cause resistance by activating compensatory feedback loops in tumor cells and tumor microenvironment components. As a result, innovative combinatorial treatments for cancer management must be applied to limit the likelihood of alternate pathway initiation as a possibility for generating novel therapeutics based on incorporation in translational research. We summarize current knowledge about the implications of ERK (MAPK) in cancer, as well as bioactive products from plants, microbial organisms or marine organisms, as well as the correlation with their chemical structures, which modulate this pathway for the treatment of different types of cancer.

8.
Brain ; 144(4): 1230-1246, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33855339

RESUMEN

Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Resistencia a Antineoplásicos/fisiología , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/metabolismo , Purinas/biosíntesis , Animales , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/patología , Resistencia a Antineoplásicos/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Ácido Micofenólico/farmacología , Temozolomida/farmacología , Células Tumorales Cultivadas
9.
Am J Physiol Cell Physiol ; 321(1): C187-C198, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34106786

RESUMEN

Ca2+ signaling plays a critical role in the regulation of hepatic metabolism by hormones including insulin. Changes in cytoplasmic Ca2+ regulate synthesis and posttranslational modification of key signaling proteins in the insulin pathways. Emerging evidence suggests that hepatocyte intracellular Ca2+ signaling is altered in lipid-loaded liver cells isolated from obese rodent models. The mechanisms of altered Ca2+-insulin and insulin-Ca2+ signaling pathways in obesity remain poorly understood. Here, we show that the kinetics of insulin-initiated intracellular (initial) Ca2+ release from endoplasmic reticulum is significantly impaired in steatotic hepatocytes from obese Alström syndrome mice. Furthermore, exenatide, a glucagon-like peptide-1 (GLP-1) analog, reversed lipid-induced inhibition of intracellular Ca2+ release kinetics in steatotic hepatocytes, without affecting the total content of intracellular Ca2+ released. Exenatide reversed the lipid-induced inhibition of intracellular Ca2+ release, at least partially, via lipid reduction in hepatocytes, which then restored hormone-regulated cytoplasmic Ca2+ signaling and insulin sensitivity. This data provides additional evidence for the important role of Ca2+ signaling pathways in obesity-associated impaired hepatic lipid homeostasis and insulin signaling. It also highlights a potential advantage of GLP-1 analogs when used to treat type 2 diabetes associated with hepatic steatosis.


Asunto(s)
Síndrome de Alstrom/tratamiento farmacológico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Exenatida/farmacología , Hipoglucemiantes/farmacología , Hígado/efectos de los fármacos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Obesidad/tratamiento farmacológico , Síndrome de Alstrom/metabolismo , Síndrome de Alstrom/patología , Animales , Glucemia/metabolismo , Calcio/metabolismo , Señalización del Calcio , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Colorantes Fluorescentes/metabolismo , Fura-2/metabolismo , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/farmacología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Insulina/metabolismo , Resistencia a la Insulina , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Ratones Transgénicos , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Obesidad/metabolismo , Obesidad/patología , Ácido Palmítico/farmacología
10.
Trends Food Sci Technol ; 104: 219-234, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32836826

RESUMEN

BACKGROUND: Garlic (Allium sativum L.) is a common herb consumed worldwide as functional food and traditional remedy for the prevention of infectious diseases since ancient time. Garlic and its active organosulfur compounds (OSCs) have been reported to alleviate a number of viral infections in pre-clinical and clinical investigations. However, so far no systematic review on its antiviral effects and the underlying molecular mechanisms exists. SCOPE AND APPROACH: The aim of this review is to systematically summarize pre-clinical and clinical investigations on antiviral effects of garlic and its OSCs as well as to further analyse recent findings on the mechanisms that underpin these antiviral actions. PubMed, Cochrane library, Google Scholar and Science Direct databases were searched and articles up to June 2020 were included in this review. KEY FINDINGS AND CONCLUSIONS: Pre-clinical data demonstrated that garlic and its OSCs have potential antiviral activity against different human, animal and plant pathogenic viruses through blocking viral entry into host cells, inhibiting viral RNA polymerase, reverse transcriptase, DNA synthesis and immediate-early gene 1(IEG1) transcription, as well as through downregulating the extracellular-signal-regulated kinase (ERK)/mitogen activated protein kinase (MAPK) signaling pathway. The alleviation of viral infection was also shown to link with immunomodulatory effects of garlic and its OSCs. Clinical studies further demonstrated a prophylactic effect of garlic in the prevention of widespread viral infections in humans through enhancing the immune response. This review highlights that garlic possesses significant antiviral activity and can be used prophylactically in the prevention of viral infections.

11.
Phytother Res ; 34(6): 1216-1225, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31977122

RESUMEN

Obesity is a medical condition in which excess body fat is accumulated by a combination of excessive food intake, lack of physical activity, and genetic susceptibility. Obesity increases the risk of various diseases and conditions, including cardiovascular diseases, diabetes, cancer, and depression. This review focuses on most recent reports pertaining to the antiobesity activity of plant-derived diterpenes in different databases. For this, a search (until August 2019) was conducted in the PubMed and Science Direct databases with the following keywords: "plant diterpenes" or "plant diterpenoids" paired with "obesity" or "antiobesity effects." Overall, 729 references that used the aforementioned keywords were selected, among which 34 articles have been included in this review. Results from this search suggest that a number of diterpenes and their derivatives have been found to exert antiobesity effects through various mechanisms, such as overweight reduction or modification of body mass index, protein-tyrosine phosphatase 1B inhibition, lipase activity inhibition, antiadipogenesis effect, among others. Carnosic acid, carnosol and the derivatives of abietic acid, steviol, and andrographolide are examples of important antiobesity diterpenes and their derivatives. Of note, plant-derived diterpenes may be potential candidates for managing obesity and obesity-related diseases and disorders in human and other animals.


Asunto(s)
Diterpenos/uso terapéutico , Obesidad/tratamiento farmacológico , Extractos Vegetales/química , Humanos
12.
Phytother Res ; 33(10): 2585-2608, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31373097

RESUMEN

Traditionally, sesame oil (SO) has been used as a popular food and medicine. The review aims to summarize the antioxidant and antiinflammatory effects of SO and its identified compounds as well as further fatty acid profiling and molecular docking study to correlate the interaction of its identified constituents with cyclooxygenase-2 (COX-2). For this, a literature study was made using Google Scholar, Pubmed, and SciFinder databases. Literature study demonstrated that SO has potential antioxidant and antiinflammatory effects in various test systems, including humans, animals, and cultured cells through various pathways such as inhibition of COX, nonenzymatic defense mechanism, inhibition of proinflammatory cytokines, NF-kB or mitogen-activated protein kinase signaling, and prostaglandin synthesis pathway. Fatty acid analysis of SO using gas chromatography identified known nine fatty acids. In silico study revealed that sesamin, sesaminol, sesamolin, stigmasterol, Δ5-avenasterol, and Δ7-avenasterol (-9.6 to -10.7 kcal/mol) were the most efficient ligand for interaction and binding with COX-2. The known fatty acid also showed binding efficiency with COX-2 to some extent (-6.0 to -8.4 kcal/mol). In summary, it is evident that SO may be one of promising traditional medicines that we could use in the prevention and management of diseases associated with oxidative stress and inflammation.


Asunto(s)
Antiinflamatorios/farmacología , Antioxidantes/farmacología , Simulación del Acoplamiento Molecular , Aceite de Sésamo/farmacología , Animales , Humanos , Estrés Oxidativo/efectos de los fármacos , Aceite de Sésamo/análisis , Aceite de Sésamo/química
13.
Phytother Res ; 33(8): 2126-2138, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31240792

RESUMEN

Depression, a multifactorial neuronal disorder with high morbidity/mortality, is associated with psychological, psychosocial, hereditary, and environmental etiologies, where reactive species exert pathophysiological functions. Anacardic acid (AA), a natural compound obtained from cashew nut liquid, has several pharmacological activities, including antioxidant and anticonvulsant. The aim of the present study was to evaluate the antidepressant-like effect of AA and the involvement of serotonergic, noradrenergic, and L-arginine-nitric oxide (NO) in tail suspension and forced swim tests and, more so, to investigate its antioxidant effect in Saccharomyces cerevisiae and in male Swiss mice (n = 8). In order to identify the antidepressant mechanisms, AA (10, 25, or 50 mg/kg, p.o.) was given 30 min before clonidine (2-adrenergic receptor agonist), L-arginine (NO precursor), propranolol (ß-adrenergic receptor antagonist), and several other agonists or antagonists used. On the other hand, clonidine, noradrenoreceptor, noradrenaline, and L-arginine were used to identify the antidepressant mechanisms. Results suggest that AA exerts antidepressant-like activity, especially at higher doses, possibly by inhibiting serotonin and 5HT-1A reuptake receptors and by inhibiting NO synthetase and guanylyl cyclase enzymes. Additionally, AA exhibited antioxidant effect in S. cerevisiae. This antioxidant capacity may be linked to its antidepressant-like effect but does not interact with α- and ß-adrenoceptor receptors. In conclusion, AA may be used as a promising agent to treat depression, especially which arises from oxidative stress.


Asunto(s)
Ácidos Anacárdicos/uso terapéutico , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Ácidos Anacárdicos/farmacología , Animales , Antidepresivos/farmacología , Suspensión Trasera , Masculino , Ratones , Óxido Nítrico , Natación
14.
J Cell Biochem ; 119(3): 2923-2928, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29120088

RESUMEN

Chemotherapy is a standard treatment method for the patients with locally advanced breast cancer. Lately, cyclophosphamide (CYP) and doxorubicin (DOX) are used as the major chemotherapeutic agents especially for the treatment of breast cancer. Till date, no serum biomarker has been able to provide an early diagnosis of breast cancer. This study aimed to assess inflammatory, cardiac, renal and hematological markers in 56 breast cancer patients (BCP) before, during and after termination of chemotherapy with CYP and DOX. Blood samples were collected from the patients at the each treatment stages mentioned above. These samples were assessed for interleukin 6 (IL-6), interleukin 10 (IL-10), lactate dehydrogenase (LDH), creatine kinase (CK), creatinine, hemoglobin (Hb), leukocyte, platelet and Na+ /K+ -ATPase levels either by ELISA or colorimetric methods. The results suggest a significant increase in IL-6 level at all the stages in BCP as compared to control group. On the other hand, IL-10, CK and Na+ /K+ -ATPase levels were found to be significantly declined during all the stages. Moreover, the majority of hematological parameters remained unchanged throughout the treatment period with the exception of creatinine and Hb which showed slight modulation in their level at different stages. Based on the results, we conclude that breast cancer and co-treatment with CYP and DOX, interfere arious biological markers, thereby, showing the physiological imbalance.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Biomarcadores de Tumor/sangre , Neoplasias de la Mama/sangre , Neoplasias de la Mama/tratamiento farmacológico , Ciclofosfamida/administración & dosificación , Proteínas de Neoplasias/sangre , Doxorrubicina/administración & dosificación , Femenino , Humanos
15.
Phytother Res ; 32(12): 2376-2388, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30281175

RESUMEN

Beta (ß)-caryophyllene (BCAR) is a major sesquiterpene of various plant essential oils reported for several important pharmacological activities, including antioxidant, anti-inflammatory, anticancer, cardioprotective, hepatoprotective, gastroprotective, nephroprotective, antimicrobial, and immune-modulatory activity. Recent studies suggest that it also possesses neuroprotective effect. This study reviews published reports pertaining to the neuropharmacological activities of BCAR. Databases such as PubMed, Scopus, MedLine Plus, and Google Scholar with keywords "beta (ß)-caryophyllene" and other neurological keywords were searched. Data were extracted by referring to articles with information about the dose or concentration/route of administration, test system, results and discussion, and proposed mechanism of action. A total of 545 research articles were recorded, and 41 experimental studies were included in this review, after application of exclusion criterion. Search results suggest that BCAR exhibits a protective role in a number of nervous system-related disorders including pain, anxiety, spasm, convulsion, depression, alcoholism, and Alzheimer's disease. Additionally, BCAR has local anesthetic-like activity, which could protect the nervous system from oxidative stress and inflammation and can act as an immunomodulatory agent. Most neurological activities of this natural product have been linked with the cannabinoid receptors (CBRs), especially the CB2R. This review suggests a possible application of BCAR as a neuroprotective agent.


Asunto(s)
Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Animales , Productos Biológicos/uso terapéutico , Fármacos del Sistema Nervioso Central/farmacología , Fármacos del Sistema Nervioso Central/uso terapéutico , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/prevención & control , Humanos , Fármacos Neuroprotectores/uso terapéutico , Aceites Volátiles/uso terapéutico , Fitoterapia/métodos , Extractos Vegetales/uso terapéutico , Sesquiterpenos Policíclicos , Sesquiterpenos/uso terapéutico
16.
Phytother Res ; 32(10): 1885-1907, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30009484

RESUMEN

Natural dietary agents have attracted considerable attention due to their role in promoting health and reducing the risk of diseases including cancer. Ginger, one of the most ancient known spices, contains bioactive compounds with several health benefits. [6]-Gingerol constitutes the most pharmacologically active among such compounds. The aim of the present work was to review the literature pertaining to the use of ginger extract and [6]-gingerol against tumorigenic and oxidative and inflammatory processes associated with cancer, along with the underlying mechanisms of action involved in signaling pathways. This will shed some light on the protective or therapeutic role of ginger derivatives in oxidative and inflammatory regulations during metabolic disturbance and on the antiproliferative and anticancer properties. Data collected from experimental (in vitro or in vivo) and clinical studies discussed in this review indicate that ginger extract and [6]-gingerol exert their action through important mediators and pathways of cell signaling, including Bax/Bcl2, p38/MAPK, Nrf2, p65/NF-κB, TNF-α, ERK1/2, SAPK/JNK, ROS/NF-κB/COX-2, caspases-3, -9, and p53. This suggests that ginger derivatives, in the form of an extract or isolated compounds, exhibit relevant antiproliferative, antitumor, invasive, and anti-inflammatory activities.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Catecoles/farmacología , Alcoholes Grasos/farmacología , Neoplasias/tratamiento farmacológico , Extractos Vegetales/farmacología , Zingiber officinale/química , Animales , Antiinflamatorios/farmacología , Línea Celular Tumoral , Humanos , Inflamación/tratamiento farmacológico , Transducción de Señal/efectos de los fármacos
17.
Biochim Biophys Acta ; 1863(9): 2135-46, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27178543

RESUMEN

The release of Ca(2+) from the endoplasmic reticulum (ER) and subsequent replenishment of ER Ca(2+) by Ca(2+) entry through store-operated Ca(2+) channels (SOCE) play critical roles in the regulation of liver metabolism by adrenaline, glucagon and other hormones. Both ER Ca(2+) release and Ca(2+) entry are severely inhibited in steatotic hepatocytes. Exendin-4, a slowly-metabolised glucagon-like peptide-1 (GLP-1) analogue, is known to reduce liver glucose output and liver lipid, but the mechanisms involved are not well understood. The aim of this study was to determine whether exendin-4 alters intracellular Ca(2+) homeostasis in steatotic hepatocytes, and to evaluate the mechanisms involved. Exendin-4 completely reversed lipid-induced inhibition of SOCE in steatotic liver cells, but did not reverse lipid-induced inhibition of ER Ca(2+) release. The action of exendin-4 on Ca(2+) entry was rapid in onset and was mimicked by GLP-1 or dibutyryl cyclic AMP. In steatotic liver cells, exendin-4 caused a rapid decrease in lipid (half time 6.5min), inhibited the accumulation of lipid in liver cells incubated in the presence of palmitate plus the SOCE inhibitor BTP-2, and enhanced the formation of cyclic AMP. Hormone-stimulated accumulation of extracellular glucose in glycogen replete steatotic liver cells was inhibited compared to that in non-steatotic cells, and this effect of lipid was reversed by exendin-4. It is concluded that, in steatotic hepatocytes, exendin-4 reverses the lipid-induced inhibition of SOCE leading to restoration of hormone-regulated cytoplasmic Ca(2+) signalling. The mechanism may involve GLP-1 receptors, cyclic AMP, lipolysis, decreased diacylglycerol and decreased activity of protein kinase C.


Asunto(s)
Señalización del Calcio/efectos de los fármacos , Hígado Graso/patología , Péptido 1 Similar al Glucagón/análogos & derivados , Hepatocitos/metabolismo , Espacio Intracelular/metabolismo , Péptidos/farmacología , Ponzoñas/farmacología , Animales , Bucladesina/farmacología , Calcio/farmacología , AMP Cíclico/metabolismo , Exenatida , Péptido 1 Similar al Glucagón/metabolismo , Hormonas/farmacología , Espacio Intracelular/efectos de los fármacos , Ácido Palmítico/farmacología , Ratas Zucker
18.
Adv Exp Med Biol ; 993: 595-621, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28900935

RESUMEN

In steatotic hepatocytes, intracellular Ca2+ homeostasis is substantially altered compared to normal. Decreased Ca2+ in the endoplasmic reticulum (ER) can lead to ER stress, an important mediator of the progression of liver steatosis to nonalcoholic steatohepatitis, type 2 diabetes, and hepatocellular carcinoma. Store-operated Ca2+ channels (SOCs) in hepatocytes are composed principally of Orai1 and STIM1 proteins. Their main role is the maintenance of adequate Ca2+ in the lumen of the ER. In steatotic hepatocytes, store-operated Ca2+ entry (SOCE) is substantially inhibited. This inhibition is associated with a decrease in Ca2+ in the ER. Lipid-induced inhibition of SOCE is mediated by protein kinase C (PKC) and may involve the phosphorylation and subsequent inhibition of Orai1. Experimental inhibition of SOCE enhances lipid accumulation in normal hepatocytes incubated in the presence of exogenous fatty acids. The antidiabetic drug exendin-4 reverses the lipid-induced inhibition of SOCE and decreases liver lipid with rapid onset. It is proposed that lipid-induced inhibition of SOCE in the plasma membrane and of SERCA2b in the ER membrane leads to a persistent decrease in ER Ca2+, ER stress, and the ER stress response, which in turn enhances (amplifies) lipid accumulation. A low level of persistent SOCE due to chronic ER Ca2+ depletion in steatotic hepatocytes may contribute to an elevated cytoplasmic-free Ca2+ concentration leading to the activation of calcium-calmodulin kinase II (CaMKII), decreased lipid removal by autophagy, and insulin resistance. It is concluded that lipid-induced inhibition of SOCE plays an important role in the progression of liver steatosis to insulin insensitivity and hepatocellular carcinoma.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio/fisiología , Calcio/metabolismo , Hepatocitos/metabolismo , Enfermedades Metabólicas/metabolismo , Neoplasias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Animales , Membrana Celular/metabolismo , Retículo Endoplásmico/metabolismo , Humanos
19.
Biochem J ; 466(2): 379-90, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25422863

RESUMEN

Lipid accumulation in hepatocytes can lead to non-alcoholic fatty liver disease (NAFLD), which can progress to non-alcoholic steatohepatitis (NASH) and Type 2 diabetes (T2D). Hormone-initiated release of Ca²âº from the endoplasmic reticulum (ER) stores and subsequent replenishment of these stores by Ca²âº entry through SOCs (store-operated Ca²âº channels; SOCE) plays a critical role in the regulation of liver metabolism. ER Ca²âº homoeostasis is known to be altered in steatotic hepatocytes. Whether store-operated Ca²âº entry is altered in steatotic hepatocytes and the mechanisms involved were investigated. Lipid accumulation in vitro was induced in cultured liver cells by amiodarone or palmitate and in vivo in hepatocytes isolated from obese Zucker rats. Rates of Ca²âº entry and release were substantially reduced in lipid-loaded cells. Inhibition of Ca²âº entry was associated with reduced hormone-initiated intracellular Ca²âº signalling and enhanced lipid accumulation. Impaired Ca²âº entry was not associated with altered expression of stromal interaction molecule 1 (STIM1) or Orai1. Inhibition of protein kinase C (PKC) reversed the impairment of Ca²âº entry in lipid-loaded cells. It is concluded that steatosis leads to a substantial inhibition of SOCE through a PKC-dependent mechanism. This enhances lipid accumulation by positive feedback and may contribute to the development of NASH and insulin resistance.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Regulación hacia Abajo , Retículo Endoplásmico/metabolismo , Hepatocitos/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína Quinasa C/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/química , Canales de Calcio/genética , Señalización del Calcio/efectos de los fármacos , Línea Celular , Células Cultivadas , Regulación hacia Abajo/efectos de los fármacos , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/enzimología , Hepatocitos/efectos de los fármacos , Hepatocitos/patología , Metabolismo de los Lípidos/efectos de los fármacos , Glicoproteínas de Membrana/antagonistas & inhibidores , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/patología , Proteína ORAI1 , Obesidad/fisiopatología , Técnicas de Placa-Clamp , Proteína Quinasa C/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Interferencia de ARN , Ratas Zucker , Molécula de Interacción Estromal 1
20.
Trends Cell Biol ; 33(11): 950-966, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36967301

RESUMEN

Nucleotides are the foundational elements of life. Proliferative cells acquire nutrients for energy production and the synthesis of macromolecules, including proteins, lipids, and nucleic acids. Nucleotides are continuously replenished through the activation of the nucleotide synthesis pathways. Despite the importance of nucleotides in cell physiology, there is still much to learn about how the purine and pyrimidine synthesis pathways are regulated in response to intracellular and exogenous signals. Over the past decade, evidence has emerged that several signaling pathways [Akt, mechanistic target of rapamycin complex I (mTORC1), RAS, TP53, and Hippo-Yes-associated protein (YAP) signaling] alter nucleotide synthesis activity and influence cell function. Here, we examine the mechanisms by which these signaling networks affect de novo nucleotide synthesis in mammalian cells. We also discuss how these molecular links can be targeted in diseases such as cancers and immune disorders.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda