Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(41): e2301128120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37748079

RESUMEN

Humans did not arrive on most of the world's islands until relatively recently, making islands favorable places for disentangling the timing and magnitude of natural and anthropogenic impacts on species diversity and distributions. Here, we focus on Amazona parrots in the Caribbean, which have close relationships with humans (e.g., as pets as well as sources of meat and colorful feathers). Caribbean parrots also have substantial fossil and archaeological records that span the Holocene. We leverage this exemplary record to showcase how combining ancient and modern DNA, along with radiometric dating, can shed light on diversification and extinction dynamics and answer long-standing questions about the magnitude of human impacts in the region. Our results reveal a striking loss of parrot diversity, much of which took place during human occupation of the islands. The most widespread species, the Cuban Parrot, exhibits interisland divergences throughout the Pleistocene. Within this radiation, we identified an extinct, genetically distinct lineage that survived on the Turks and Caicos until Indigenous human settlement of the islands. We also found that the narrowly distributed Hispaniolan Parrot had a natural range that once included The Bahamas; it thus became "endemic" to Hispaniola during the late Holocene. The Hispaniolan Parrot also likely was introduced by Indigenous people to Grand Turk and Montserrat, two islands where it is now also extirpated. Our research demonstrates that genetic information spanning paleontological, archaeological, and modern contexts is essential to understand the role of humans in altering the diversity and distribution of biota.


Asunto(s)
Amazona , Animales , Humanos , Indias Occidentales , Región del Caribe , Bahamas , Efectos Antropogénicos
2.
Proc Biol Sci ; 291(2019): 20232665, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38531401

RESUMEN

Organisms that have repeatedly evolved similar morphologies owing to the same selective pressures provide excellent cases in which to examine specific morphological changes and their relevance to the ecology and evolution of taxa. Hosts of permanent parasites act as an independent evolutionary experiment, as parasites on these hosts are thought to be undergoing similar selective pressures. Parasitic feather lice have repeatedly diversified into convergent ecomorphs in different microhabitats on their avian hosts. We quantified specific morphological characters to determine (i) which traits are associated with each ecomorph, (ii) the quantitative differences between these ecomorphs, and (iii) if there is evidence of displacement among co-occurring lice as might be expected under louse-louse competition on the host. We used nano-computed tomography scan data of 89 specimens, belonging to four repeatedly evolved ecomorphs, to examine their mandibular muscle volume, limb length and three-dimensional head shape data. Here, we find evidence that lice repeatedly evolve similar morphologies as a mechanism to escape host defences, but also diverge into different ecomorphs related to the way they escape these defences. Lice that co-occur with other genera on a host exhibit greater morphological divergence, indicating a potential role of competition in evolutionary divergence.


Asunto(s)
Parásitos , Animales , Filogenia , Aves/parasitología , Ecología , Interacciones Huésped-Parásitos
3.
Oecologia ; 204(4): 751-759, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38523192

RESUMEN

Shifts in flowering time among plant communities as a result of climate change, including extreme weather events, are a growing concern. These plant phenological changes may affect the quantity and quality of food sources for specialized insect pollinators. Plant-pollinator interactions are threatened by habitat alterations and biodiversity loss, and changes in these interactions may lead to declines in flower visitors and pollination services. Most prior research has focused on short-term plant-pollinator interactions, which do not accurately capture changes in pollination services. Here, we characterized long-term plant-pollinator interactions and identified potential risks to specialized butterfly species due to habitat loss, fragmented landscapes, and changes in plant assemblages. We used 21 years of historical data from museum specimens to track the potential effects of direct and indirect changes in precipitation, temperature, monsoons, and wildfires on plant-pollinator mutualism in the Great Basin and Sierra Nevada. We found decreased pollen richness associated with butterflies within sites, as well as an increase in pollen grain abundance of drought-tolerant plants, particularly in the past 10 years. Moreover, increased global temperatures and the intensity and frequency of precipitation and wildfires were negatively correlated with pollen diversity. Our findings have important implications for understanding plant-pollinator interactions and the pollination services affected by global warming.


Asunto(s)
Cambio Climático , Polen , Polinización , Animales , Lepidópteros/fisiología , Mariposas Diurnas/fisiología , Ecosistema , Biodiversidad
4.
Mol Phylogenet Evol ; 183: 107775, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36972794

RESUMEN

The dynamic climate history that drove sea level fluctuation during past glacial periods mediated the movement of organisms between Asia and North America via the Bering Land Bridge. Investigations of the biogeographic histories of small mammals and their parasites demonstrate facets of a complex history of episodic geographic colonization and refugial isolation that structured diversity across the Holarctic. We use a large multi-locus nuclear DNA sequence dataset to robustly resolve relationships within the cestode genus Arostrilepis (Cyclophyllidea: Hymenolepididae), a widespread parasite of predominantly arvicoline rodents (voles, lemmings). Using this phylogeny, we confirm that several Asian Arostrilepis lineages colonized North America during up to four distinct glacial periods in association with different rodent hosts, consistent with taxon-pulse dynamics. A previously inferred westward dispersal across the land bridge is rejected. We also refine interpretations of past host colonization, providing evidence for several distinct episodes of expanding host range, which probably contributed to diversification by Arostrilepis. Finally, Arostrilepis is shown to be paraphyletic with respect to Hymenandrya thomomyis, a parasite of pocket gophers, confirming that ancient Arostrilepis species colonized new host lineages upon arriving in North America.


Asunto(s)
Cestodos , Parásitos , Animales , Filogenia , Cestodos/genética , América del Norte , Clima , Mamíferos , Arvicolinae
5.
Proc Biol Sci ; 289(1970): 20220042, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35259992

RESUMEN

Adaptive radiation is an important mechanism of organismal diversification and can be triggered by new ecological opportunities. Although poorly studied in this regard, parasites are an ideal group in which to study adaptive radiations because of their close associations with host species. Both experimental and comparative studies suggest that the ectoparasitic wing lice of pigeons and doves have adaptively radiated, leading to differences in body size and overall coloration. Here, we show that long-distance dispersal by dove hosts was central to parasite diversification because it provided new ecological opportunities for parasites to speciate after host-switching. We further show that among extant parasite lineages host-switching decreased over time, with cospeciation becoming the more dominant mode of parasite speciation. Taken together, our results suggest that host dispersal, followed by host-switching, provided novel ecological opportunities that facilitated adaptive radiation by parasites.


Asunto(s)
Parásitos , Phthiraptera , Animales , Columbidae , Interacciones Huésped-Parásitos , Filogenia
6.
Mol Phylogenet Evol ; 174: 107556, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35738542

RESUMEN

The avian feather louse Philopterus-complex (Phthiraptera: Ischnocera: Philopteridae) currently contains 12 genera that have been grouped together because of shared morphological characteristics. Although previously lumped into a single genus (Philopterus), more recent morphological treatments have separated the group into several different genera. Here we evaluate the status of these genera using DNA sequence data from 118 ingroup specimens belonging to ten genera in the Philopterus-complex: Australophilopterus Mey, 2004, Cinclosomicola Mey 2004, Clayiella Eichler, 1940, Corcorides Mey, 2004, Mayriphilopterus Mey, 2004, Paraphilopterus Mey 2004, Philopteroides Mey 2004, Philopterus Nitzsch, 1818, Tyranniphilopterus Mey, 2004, and Vinceopterus Gustafsson, Lei, Chu, Zou, and Bush, 2019. Our sampling includes 97 new louse-host association records. Our analyses suggest that the genus Debeauxoecus Conci, 1941, parasitic on pittas (Aves: Pittidae), is outside of the Philopterus-complex, and that there is strong support for the monophyly of a group containing the remaining genera from the complex. Some diverse genera, such as Philopterus (sensu stricto) and Mayriphilopterus are supported as monophyletic, whereas the genera Australophilopterus, Philopteroides, and Tyranniphilopterus are not. The present study is the largest phylogenetic reconstruction of avian lice belonging to the Philopterus-complex to date and suggests that further generic revision is needed in the group to integrate molecular and morphological information.


Asunto(s)
Anoplura , Enfermedades de las Aves , Ischnocera , Passeriformes , Phthiraptera , Animales , Enfermedades de las Aves/genética , Enfermedades de las Aves/parasitología , Plumas , Ischnocera/anatomía & histología , Ischnocera/genética , Passeriformes/parasitología , Phthiraptera/genética , Filogenia
7.
Proc Natl Acad Sci U S A ; 116(22): 10874-10882, 2019 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-31085636

RESUMEN

Environmental change can create opportunities for increased rates of lineage diversification, but continued species accumulation has been hypothesized to lead to slowdowns via competitive exclusion and niche partitioning. Such density-dependent models imply tight linkages between diversification and trait evolution, but there are plausible alternative models. Little is known about the association between diversification and key ecological and phenotypic traits at broad phylogenetic and spatial scales. Do trait evolutionary rates coincide with rates of diversification, are there lags among these rates, or is diversification niche-neutral? To address these questions, we combine a deeply sampled phylogeny for a major flowering plant clade-Saxifragales-with phenotype and niche data to examine temporal patterns of evolutionary rates. The considerable phenotypic and habitat diversity of Saxifragales is greatest in temperate biomes. Global expansion of these habitats since the mid-Miocene provided ecological opportunities that, with density-dependent adaptive radiation, should result in simultaneous rate increases for diversification, niche, and phenotype, followed by decreases with habitat saturation. Instead, we find that these rates have significantly different timings, with increases in diversification occurring at the mid-Miocene Climatic Optimum (∼15 Mya), followed by increases in niche and phenotypic evolutionary rates by ∼5 Mya; all rates increase exponentially to the present. We attribute this surprising lack of temporal coincidence to initial niche-neutral diversification followed by ecological and phenotypic divergence coincident with more extreme cold and dry habitats that proliferated into the Pleistocene. A lack of density-dependence contrasts with investigations of other cosmopolitan lineages, suggesting alternative patterns may be common in the diversification of temperate lineages.


Asunto(s)
Biodiversidad , Evolución Biológica , Ecosistema , Fenotipo , Filogenia , Saxifragales/clasificación , Saxifragales/genética , Saxifragales/fisiología
8.
Mol Phylogenet Evol ; 155: 106998, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33130299

RESUMEN

The evolution of obligate parasites is often interpreted in light of their hosts' evolutionary history. An expanded approach is to examine the histories of multiple lineages of parasites that inhabit similar environments on a particular host lineage. Western North American chipmunks (genus Tamias) have a broad distribution, a history of divergence with gene flow, and host two species of sucking lice (Anoplura), Hoplopleura arboricola and Neohaematopinus pacificus. From total genomic sequencing, we obtained sequences of over 1100 loci sampled across the genomes of these lice to compare their evolutionary histories and examine the roles of host association in structuring louse relationships. Within each louse species, clades are largely associated with closely related chipmunk host species. Exceptions to this pattern appear to have a biogeographic component, but differ between the two louse species. Phylogenetic relationships among these major louse clades, in both species, are not congruent with chipmunk relationships. In the context of host associations, each louse lineage has a different evolutionary history, supporting the hypothesis that host-parasite assemblages vary both across the landscape and with the taxa under investigation. In addition, the louse Hoplopleura erratica (parasitizing the eastern Tamias striatus) is embedded within H. arboricola, rendering it paraphyletic. This phylogenetic result, together with comparable divergences within H. arboricola, indicate a need for taxonomic revision. Both host divergence and biogeographic components shape parasite diversification as demonstrated by the distinctive diversification patterns of these two independently evolving lineages that parasitize the same hosts.


Asunto(s)
Anoplura/clasificación , Parásitos/genética , Filogenia , Sciuridae/parasitología , Animales , Anoplura/genética , Secuencia de Bases , Especificidad de la Especie
9.
Biol Lett ; 17(3): 20200760, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33726563

RESUMEN

Worldwide decline in biodiversity during the Holocene has impeded a comprehensive understanding of pre-human biodiversity and biogeography. This is especially true on islands, because many recently extinct island taxa were morphologically unique, complicating assessment of their evolutionary relationships using morphology alone. The Caribbean remains an avian hotspot but was more diverse before human arrival in the Holocene. Among the recently extinct lineages is the enigmatic genus Nesotrochis, comprising three flightless species. Based on morphology, Nesotrochis has been considered an aberrant rail (Rallidae) or related to flufftails (Sarothruridae). We recovered a nearly complete mitochondrial genome of Nesotrochis steganinos from fossils, discovering that it is not a rallid but instead is sister to Sarothruridae, volant birds now restricted to Africa and New Guinea, and the recently extinct, flightless Aptornithidae of New Zealand. This result suggests a widespread or highly dispersive most recent common ancestor of the group. Prior to human settlement, the Caribbean avifauna had a far more cosmopolitan origin than is evident from extant species.


Asunto(s)
ADN Antiguo , Extinción Biológica , África , Animales , Región del Caribe , ADN Mitocondrial/genética , Fósiles , Haití , Humanos , Islas , Nueva Zelanda , Filogenia
10.
Proc Natl Acad Sci U S A ; 115(50): 12775-12780, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30478043

RESUMEN

Hemipteroid insects (Paraneoptera), with over 10% of all known insect diversity, are a major component of terrestrial and aquatic ecosystems. Previous phylogenetic analyses have not consistently resolved the relationships among major hemipteroid lineages. We provide maximum likelihood-based phylogenomic analyses of a taxonomically comprehensive dataset comprising sequences of 2,395 single-copy, protein-coding genes for 193 samples of hemipteroid insects and outgroups. These analyses yield a well-supported phylogeny for hemipteroid insects. Monophyly of each of the three hemipteroid orders (Psocodea, Thysanoptera, and Hemiptera) is strongly supported, as are most relationships among suborders and families. Thysanoptera (thrips) is strongly supported as sister to Hemiptera. However, as in a recent large-scale analysis sampling all insect orders, trees from our data matrices support Psocodea (bark lice and parasitic lice) as the sister group to the holometabolous insects (those with complete metamorphosis). In contrast, four-cluster likelihood mapping of these data does not support this result. A molecular dating analysis using 23 fossil calibration points suggests hemipteroid insects began diversifying before the Carboniferous, over 365 million years ago. We also explore implications for understanding the timing of diversification, the evolution of morphological traits, and the evolution of mitochondrial genome organization. These results provide a phylogenetic framework for future studies of the group.


Asunto(s)
Insectos/genética , Animales , Calibración , Ecosistema , Fósiles , Genoma Mitocondrial/genética , Filogenia
11.
Proc Biol Sci ; 287(1921): 20193005, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32070251

RESUMEN

Tinamous host the highest generic diversity of lice of any group of birds, as well as hosting representatives of all four avian feather louse ecomorphs. Although the generic diversity of tinamou feather lice is well documented, few attempts have been made to reconstruct the phylogenetic relationships among these lice. To test whether tinamou feather lice form a monophyletic group as a whole, we used whole-genome sequencing to estimate a higher-level phylogeny of tinamou feather lice, together with a broad diversity of other avian feather louse groups. In total, we analysed sequences from over 1000 genes for 48 genera of avian lice using both concatenated and coalescent approaches to estimate the phylogeny of this diverse group of avian feather lice. Although the body louse ecomorph of tinamou feather lice formed a monophyletic group, they did not strictly form a monophyletic group together with the other three ecomorphs of tinamou feather lice. In particular, a clade comprised of several feather louse genera, mainly from South America, is nested phylogenetically within tinamou lice, which also have their main centre of diversity in South America. These results suggest in situ radiation of these parasites in South America.


Asunto(s)
Paleognatos/parasitología , Animales , Evolución Biológica , Aves/parasitología , Plumas/parasitología , Interacciones Huésped-Parásitos , Phthiraptera , Filogenia , América del Sur
12.
Syst Biol ; 68(2): 298-316, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30239963

RESUMEN

Phylogenomic data sets are illuminating many areas of the Tree of Life. However, the large size of these data sets alone may be insufficient to resolve problematic nodes in the most rapid evolutionary radiations, because inferences in zones of extraordinarily low phylogenetic signal can be sensitive to the model and method of inference, as well as the information content of loci employed. We used a data set of $>$3950 ultraconserved element (UCE) loci from a classic mammalian radiation, ground-dwelling squirrels of the tribe Marmotini (Sciuridae: Xerinae), to assess sensitivity of phylogenetic estimates to varying per-locus information content across four different inference methods (RAxML, ASTRAL, NJst, and SVDquartets). Persistent discordance was found in topology and bootstrap support between concatenation- and coalescent-based inferences; among methods within the coalescent framework; and within all methods in response to different filtering scenarios. Contrary to some recent empirical UCE-based studies, filtering by information content did not promote complete among-method concordance. Nevertheless, filtering did improve concordance relative to randomly selected locus sets, largely via improved consistency of two-step summary methods (particularly NJst) under conditions of higher average per-locus variation (and thus increasing gene tree precision). The benefits of phylogenomic data set filtering are variable among classes of inference methods and across different evolutionary scenarios, reiterating the complexities of resolving rapid radiations, even with robust taxon and character sampling.


Asunto(s)
Clasificación/métodos , Filogenia , Sciuridae/clasificación , Sciuridae/genética , Animales , Especiación Genética , Genoma , Modelos Genéticos
13.
Mol Biol Evol ; 34(7): 1743-1757, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28419279

RESUMEN

Insects with restricted diets rely on symbiotic bacteria to provide essential metabolites missing in their diet. The blood-sucking lice are obligate, host-specific parasites of mammals and are themselves host to symbiotic bacteria. In human lice, these bacterial symbionts supply the lice with B-vitamins. Here, we sequenced the genomes of symbiotic and heritable bacterial of human, chimpanzee, gorilla, and monkey lice and used phylogenomics to investigate their evolutionary relationships. We find that these symbionts have a phylogenetic history reflecting the louse phylogeny, a finding contrary to previous reports of symbiont replacement. Examination of the highly reduced symbiont genomes (0.53-0.57 Mb) reveals much of the genomes are dedicated to vitamin synthesis. This is unchanged in the smallest symbiont genome and one that appears to have been reorganized. Specifically, symbionts from human lice, chimpanzee lice, and gorilla lice carry a small plasmid that encodes synthesis of vitamin B5, a vitamin critical to the bacteria-louse symbiosis. This plasmid is absent in an old world monkey louse symbiont, where this pathway is on its primary chromosome. This suggests the unique genomic configuration brought about by the plasmid is not essential for symbiosis, but once obtained, it has persisted for up to 25 My. We also find evidence that human, chimpanzee, and gorilla louse endosymbionts have lost a pathway for synthesis of vitamin B1, whereas the monkey louse symbiont has retained this pathway. It is unclear whether these changes are adaptive, but they may point to evolutionary responses of louse symbionts to shifts in primate biology.


Asunto(s)
Anoplura/genética , Pediculus/genética , Simbiosis/genética , Animales , Bacterias/genética , Evolución Biológica , Evolución Molecular , Genoma Bacteriano , Genómica/métodos , Hominidae/genética , Humanos , Pan troglodytes/genética , Filogenia , Plásmidos/genética , Primates/genética , Análisis de Secuencia de ADN/métodos
14.
Bioscience ; 68(2): 112-124, 2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29599548

RESUMEN

The digitization of biocollections is a critical task with direct implications for the global community who use the data for research and education. Recent innovations to involve citizen scientists in digitization increase awareness of the value of biodiversity specimens; advance science, technology, engineering, and math literacy; and build sustainability for digitization. In support of these activities, we launched the first global citizen-science event focused on the digitization of biodiversity specimens: Worldwide Engagement for Digitizing Biocollections (WeDigBio). During the inaugural 2015 event, 21 sites hosted events where citizen scientists transcribed specimen labels via online platforms (DigiVol, Les Herbonautes, Notes from Nature, the Smithsonian Institution's Transcription Center, and Symbiota). Many citizen scientists also contributed off-site. In total, thousands of citizen scientists around the world completed over 50,000 transcription tasks. Here, we present the process of organizing an international citizen-science event, an analysis of the event's effectiveness, and future directions-content now foundational to the growing WeDigBio event.

15.
Syst Biol ; 66(6): 896-911, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28108601

RESUMEN

Parasitic "wing lice" (Phthiraptera: Columbicola) and their dove and pigeon hosts are a well-recognized model system for coevolutionary studies at the intersection of micro- and macroevolution. Selection on lice in microevolutionary time occurs as pigeons and doves defend themselves against lice by preening. In turn, behavioral and morphological adaptations of the lice improve their ability to evade host defense. Over macroevolutionary time wing lice tend to cospeciate with their hosts; yet, some species of Columbicola have switched to new host species. Understanding the ecological and evolutionary factors that influence coadaptation and codiversification in this system will substantially improve our understanding of coevolution in general. However, further work is hampered by the lack of a robust phylogenetic framework for Columbicola spp. and their hosts. Previous attempts to resolve the phylogeny of Columbicola based on sequences from a few genes provided limited support. Here, we apply a new approach, target restricted assembly, to assemble 977 orthologous gene sequences from whole-genome sequence data generated from very small, ethanol-preserved specimens, representing up to 61 species of wing lice. Both concatenation and coalescent methods were used to estimate the species tree. These two approaches yielded consistent and well-supported trees with 90% of all relationships receiving 100% support, which is a substantial improvement over previous studies. We used this new phylogeny to show that biogeographic ranges are generally conserved within clades of Columbicola wing lice. Limited inconsistencies are probably attributable to intercontinental dispersal of hosts, and host switching by some of the lice. [aTRAM; coalescent; coevolution; concatenation; species tree.].


Asunto(s)
Genoma/genética , Phthiraptera/clasificación , Phthiraptera/genética , Filogenia , Animales , Columbidae/parasitología , Especificidad del Huésped , Interacciones Huésped-Parásitos , Phthiraptera/fisiología
16.
Syst Biol ; 66(5): 786-798, 2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28123117

RESUMEN

Novel sequencing technologies are rapidly expanding the size of data sets that can be applied to phylogenetic studies. Currently the most commonly used phylogenomic approaches involve some form of genome reduction. While these approaches make assembling phylogenomic data sets more economical for organisms with large genomes, they reduce the genomic coverage and thereby the long-term utility of the data. Currently, for organisms with moderate to small genomes ($<$1000 Mbp) it is feasible to sequence the entire genome at modest coverage ($10-30\times$). Computational challenges for handling these large data sets can be alleviated by assembling targeted reads, rather than assembling the entire genome, to produce a phylogenomic data matrix. Here we demonstrate the use of automated Target Restricted Assembly Method (aTRAM) to assemble 1107 single-copy ortholog genes from whole genome sequencing of sucking lice (Anoplura) and out-groups. We developed a pipeline to extract exon sequences from the aTRAM assemblies by annotating them with respect to the original target protein. We aligned these protein sequences with the inferred amino acids and then performed phylogenetic analyses on both the concatenated matrix of genes and on each gene separately in a coalescent analysis. Finally, we tested the limits of successful assembly in aTRAM by assembling 100 genes from close- to distantly related taxa at high to low levels of coverage.Both the concatenated analysis and the coalescent-based analysis produced the same tree topology, which was consistent with previously published results and resolved weakly supported nodes. These results demonstrate that this approach is successful at developing phylogenomic data sets from raw genome sequencing reads. Further, we found that with coverages above $5-10\times$, aTRAM was successful at assembling 80-90% of the contigs for both close and distantly related taxa. As sequencing costs continue to decline, we expect full genome sequencing will become more feasible for a wider array of organisms, and aTRAM will enable mining of these genomic data sets for an extensive variety of applications, including phylogenomics. [aTRAM; gene assembly; genome sequencing; phylogenomics.].


Asunto(s)
Clasificación/métodos , Genómica/métodos , Filogenia , Análisis de Secuencia
17.
Biol Lett ; 14(5)2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29794007

RESUMEN

The diversification of parasite groups often occurs at the same time as the diversification of their hosts. However, most studies demonstrating this concordance only examine single host-parasite groups. Multiple diverse lineages of ectoparasitic lice occur across both birds and mammals. Here, we describe the evolutionary history of lice based on analyses of 1107 single-copy orthologous genes from sequenced genomes of 46 species of lice. We identify three major diverse groups of lice: one exclusively on mammals, one almost exclusively on birds and one on both birds and mammals. Each of these groups radiated just after the Cretaceous-Paleogene (K-Pg) boundary, the time of the mass extinction event of the dinosaurs and rapid diversification of most of the modern lineages of birds and mammals.


Asunto(s)
Evolución Biológica , Aves/parasitología , Mamíferos/parasitología , Phthiraptera/clasificación , Animales , Genoma de los Insectos/genética , Interacciones Huésped-Parásitos , Phthiraptera/genética , Filogenia
18.
Appl Environ Microbiol ; 82(11): 3185-97, 2016 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-26994086

RESUMEN

UNLABELLED: Roughly 10% to 15% of insect species host heritable symbiotic bacteria known as endosymbionts. The lice parasitizing mammals rely on endosymbionts to provide essential vitamins absent in their blood meals. Here, we describe two bacterial associates from a louse, Proechinophthirus fluctus, which is an obligate ectoparasite of a marine mammal. One of these is a heritable endosymbiont that is not closely related to endosymbionts of other mammalian lice. Rather, it is more closely related to endosymbionts of the genus Sodalis associated with spittlebugs and feather-chewing bird lice. Localization and vertical transmission of this endosymbiont are also more similar to those of bird lice than to those of other mammalian lice. The endosymbiont genome appears to be degrading in symbiosis; however, it is considerably larger than the genomes of other mammalian louse endosymbionts. These patterns suggest the possibility that this Sodalis endosymbiont might be recently acquired, replacing a now-extinct, ancient endosymbiont. From the same lice, we also identified an abundant bacterium belonging to the genus Rickettsia that is closely related to Rickettsia ricketsii, a human pathogen vectored by ticks. No obvious masses of the Rickettsia bacterium were observed in louse tissues, nor did we find any evidence of vertical transmission, so the nature of its association remains unclear. IMPORTANCE: Many insects are host to heritable symbiotic bacteria. These heritable bacteria have been identified from numerous species of parasitic lice. It appears that novel symbioses have formed between lice and bacteria many times, with new bacterial symbionts potentially replacing existing ones. However, little was known about the symbionts of lice parasitizing marine mammals. Here, we identified a heritable bacterial symbiont in lice parasitizing northern fur seals. This bacterial symbiont appears to have been recently acquired by the lice. The findings reported here provide insights into how new symbioses form and how this lifestyle is shaping the symbiont genome.


Asunto(s)
Anoplura/microbiología , Enterobacteriaceae/aislamiento & purificación , Enterobacteriaceae/fisiología , Rickettsia/aislamiento & purificación , Simbiosis , Animales , Enterobacteriaceae/genética , Lobos Marinos/parasitología , Genoma Bacteriano
19.
BMC Bioinformatics ; 16: 98, 2015 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-25887972

RESUMEN

BACKGROUND: Assembling genes from next-generation sequencing data is not only time consuming but computationally difficult, particularly for taxa without a closely related reference genome. Assembling even a draft genome using de novo approaches can take days, even on a powerful computer, and these assemblies typically require data from a variety of genomic libraries. Here we describe software that will alleviate these issues by rapidly assembling genes from distantly related taxa using a single library of paired-end reads: aTRAM, automated Target Restricted Assembly Method. The aTRAM pipeline uses a reference sequence, BLAST, and an iterative approach to target and locally assemble the genes of interest. RESULTS: Our results demonstrate that aTRAM rapidly assembles genes across distantly related taxa. In comparative tests with a closely related taxon, aTRAM assembled the same sequence as reference-based and de novo approaches taking on average < 1 min per gene. As a test case with divergent sequences, we assembled >1,000 genes from six taxa ranging from 25 - 110 million years divergent from the reference taxon. The gene recovery was between 97 - 99% from each taxon. CONCLUSIONS: aTRAM can quickly assemble genes across distantly-related taxa, obviating the need for draft genome assembly of all taxa of interest. Because aTRAM uses a targeted approach, loci can be assembled in minutes depending on the size of the target. Our results suggest that this software will be useful in rapidly assembling genes for phylogenomic projects covering a wide taxonomic range, as well as other applications. The software is freely available http://www.github.com/juliema/aTRAM .


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Filogenia , Análisis de Secuencia de ADN/métodos , Programas Informáticos , Sitios Genéticos , Biblioteca Genómica , Genómica
20.
Proc Biol Sci ; 281(1777): 20132174, 2014 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-24403325

RESUMEN

The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites.


Asunto(s)
Pan troglodytes/genética , Pan troglodytes/parasitología , Pediculus/fisiología , Animales , Evolución Molecular , Femenino , Genoma Mitocondrial , Humanos , Datos de Secuencia Molecular , Pediculus/genética , Alineación de Secuencia , Análisis de Secuencia de ADN , Uganda
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda