Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Heliyon ; 10(11): e31767, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38841508

RESUMEN

This paper proposes a new contribution in the field of optimizing control techniques for wind systems to enhance the quality of the energy produced in the grid. Although the Sliding Mode control technique, whether classical or involving the use of artificial intelligence, has shown interesting results, its main drawback lies in the oscillation phenomenon commonly referred to as "chattering." This phenomenon affects the accuracy and robustness of the system, as well as the parametric variation of the system. In this work, we propose a solution that combines two nonlinear techniques based on the Lyapunov theorem to eliminate the chattering phenomenon. It is a hybrid approach between the Backstepping strategy and the Sliding Mode, aiming to control the active and reactive powers of the doubly fed induction generator (DFIG) connected to the electrical grid by two converters (grid side and machine side). This hybrid technique aims to improve the performance of the wind system in terms of precision errors, stability, as well as active and reactive power. The proposed solution has been validated in the Matlab & Simulink environment to assess the performance and robustness of the proposed model, as well as experimentally validated on a test bench using the DSPACE 1104 card. The obtained results are then compared with other techniques, demonstrating a significant improvement in performance.

2.
Heliyon ; 10(15): e35712, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39170361

RESUMEN

This study employs an FPGA board to implement a robust control technique for wind energy conversion systems (WECS). This approach facilitates extensive testing and validation of the control system across diverse wind conditions, utilizing the FPGA's parallel processing capabilities and advanced control algorithms. This method ensures robustness against nonlinearities and system uncertainties. FPGA-in-the-loop (FIL) testing provides precise and effective simulation results, enabling rapid prototyping and iterative modifications of control algorithms. The effectiveness of the robust control strategy is confirmed by FIL findings, demonstrating significant improvements in WECS stability and efficiency. Furthermore, the study highlights the strategy's potential to enhance WECS reliability and efficiency in real-world applications.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda