Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Enzyme Inhib Med Chem ; 38(1): 2202358, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37096560

RESUMEN

Epidermal growth factor receptor (EGFR) and human epidermal growth factor receptor 2 (HER2) protein tyrosine kinases co-expressed in various cancers such as ovarian, breast, colon, and prostate subtypes. Herein, new TAK-285 derivatives (9a-h) were synthesised, characterised, and biologically evaluated as dual EGFR/HER2 inhibitors. Compound 9f exhibited IC50 values of 2.3 nM over EGFR and 234 nM over HER2, which is 38-fold of staurosporine and 10-fold of TAK-285 over EGFR. Compound 9f also showed high selectivity profile when tested over a small kinase panel. Compounds 9a-h showed IC50 values in the range of 1.0-7.3 nM and 0.8-2.8 nM against PC3 and 22RV1 prostate carcinoma cell lines, respectively. Cell cycle analysis, apoptotic induction, molecular docking, dynamics, and MM-GBSA studies confirmed the plausible mechanism(s) of compound 9f as a potent EGFR/HER2 dual inhibitor with an effective antiproliferative action against prostate carcinoma.


Asunto(s)
Antineoplásicos , Carcinoma , Neoplasias de la Próstata , Masculino , Humanos , Simulación del Acoplamiento Molecular , Próstata , Línea Celular Tumoral , Antineoplásicos/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Proliferación Celular , Relación Estructura-Actividad , Ensayos de Selección de Medicamentos Antitumorales , Estructura Molecular , Receptores ErbB
2.
Inflammopharmacology ; 31(6): 2857-2883, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37950803

RESUMEN

Chronic inflammation is a common underlying factor in many major diseases, including heart disease, diabetes, cancer, and autoimmune disorders, and is responsible for up to 60% of all deaths worldwide. Metformin, statins, and corticosteroids, and NSAIDs (non-steroidal anti-inflammatory drugs) are often given as anti-inflammatory pharmaceuticals, however, often have even more debilitating side effects than the illness itself. The natural product-based therapy of inflammation-related diseases has no adverse effects and good beneficial results compared to substitute conventional anti-inflammatory medications. In this review article, we provide a concise overview of present pharmacological treatments, the pathophysiology of inflammation, and the signaling pathways that underlie it. In addition, we focus on the most promising natural products identified as potential anti-inflammatory therapeutic agents. Moreover, preclinical studies and clinical trials evaluating the efficacy of natural products as anti-inflammatory therapeutic agents and their pragmatic applications with promising outcomes are reviewed. In addition, the safety, side effects and technical barriers of natural products are discussed. Furthermore, we also summarized the latest technological advances in the discovery and scientific development of natural products-based medicine.


Asunto(s)
Enfermedades Autoinmunes , Productos Biológicos , Humanos , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Antiinflamatorios no Esteroideos/farmacología , Antiinflamatorios no Esteroideos/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Enfermedades Autoinmunes/tratamiento farmacológico
3.
Metabolites ; 13(2)2023 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-36837759

RESUMEN

Antioxidant small molecules can prevent or delay the oxidative damage caused by free radicals. Herein, a structure-based hybridization of two natural antioxidants (caffeic acid and melatonin) afforded a novel hybrid series of indole-based amide analogues which was synthesized with potential antioxidant properties. A multiple-step scheme of in vitro radical scavenging assays was carried out to evaluate the antioxidant activity of the synthesized compounds. The results of the DPPH assay demonstrated that the indole-based caffeic acid amides are more active free radical scavenging agents than their benzamide analogues. Compared to Trolox, a water-soluble analogue of vitamin E, compounds 3a, 3f, 3h, 3j, and 3m were found to have excellent DPPH radical scavenging activities with IC50 values of 95.81 ± 1.01, 136.8 ± 1.04, 86.77 ± 1.03, 50.98 ± 1.05, and 67.64 ± 1.02 µM. Three compounds out of five (3f, 3j, and 3m) showed a higher capacity to neutralize the radical cation ABTS•+ more than Trolox with IC50 values of 14.48 ± 0.68, 19.49 ± 0.54, and 14.92 ± 0.30 µM, respectively. Compound 3j presented the highest antioxidant activity with a FRAP value of 4774.37 ± 137.20 µM Trolox eq/mM sample. In a similar way to the FRAP assay, the best antioxidant activity against the peroxyl radicals was demonstrated by compound 3j (10,714.21 ± 817.76 µM Trolox eq/mM sample). Taken together, compound 3j was validated as a lead hybrid molecule that could be optimized to maximize its antioxidant potency for the treatment of oxidative stress-related diseases.

4.
BMC Complement Med Ther ; 22(1): 135, 2022 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-35578215

RESUMEN

BACKGROUND: Trachyspermum ammi, commonly known as Ajwain, is a member of the Apiaceae family. It is a therapeutic herbal spice with diverse pharmacological properties, used in traditional medicine for various ailments. However, all previous studies were conducted using small molecule extracts, leaving the protein's bioactivity undiscovered. AIM: The current study aimed to demonstrate the cytotoxic activity of Ajwain non-specific lipid transfer protein (nsLTP1) in normal breast (MCF10A), breast cancer (MCF-7), and pancreatic cancer (AsPC-1) cell lines. Also, to evaluate its structural stability in human serum as well as at high temperature conditions. METHODS: The cytotoxic activity of Ajwain nsLTP1 was evaluated in MCF-7 and AsPC-1 cell lines using MTT assay. Annexin V-FITC and PI staining were used to detect the early apoptotic and late apoptotic cells. The role of nsLTP1 in inducing apoptosis was further studied by quantifying Bcl-2, Bax, Caspase-3, Survivin, EGFR, and VEGF genes expression using RT-PCR. CD spectroscopy analyzed the nsLTP1 conformational changes after thermal treatment for structure stability determination. The RP-HPLC was used to analyze the nsLTP1 degradation rate in human serum at different time intervals incubated at 37 °C. RESULTS: Ajwain nsLTP1 showed a potent cytotoxic effect in MCF-7 and AsPC-1. The IC50 value obtained in MCF-7 was 8.21 µM, while for AsPC-1 4.17 µM. The effect of nsLTP1 on stimulating apoptosis revealed that the proportions of apoptotic cells in both cell lines were relatively increased depending on the concentration. The apoptotic cells percentage at 20 µM was in MCF-7 71% (***P < 0.001) and AsPC-1 88% (***P < 0.001). These results indicate that nsLTP1 might efficaciously induce apoptosis in multiple types of cancerous cells. Genes expression in MCF-7 and AsPC-1 showed significant upregulation in Bax and Caspase-3 and downregulation in Bcl-2, Survivin, EGFR, and VEGF protein. The CD analysis of nsLTP1 showed a significant thermostable property. In serum, nsLTP1 showed a slow degradation rate, indicating high stability with a half-life of ~ 8.4 h. CONCLUSION: Our results revealed the potential anticancer activity of Ajwain nsLTP1 and its mechanism in inducing apoptosis. It further exhibited thermostable properties at high temperatures and in human serum, which suggested this protein as a promising anticancer agent.


Asunto(s)
Antineoplásicos , Apiaceae , Antineoplásicos/farmacología , Apiaceae/química , Proteínas Portadoras , Caspasa 3 , Receptores ErbB , Humanos , Semillas/química , Survivin , Factor A de Crecimiento Endotelial Vascular , Proteína X Asociada a bcl-2
5.
Nanoscale ; 14(11): 4065-4072, 2022 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-35230362

RESUMEN

Nanoparticles (NPs) have been used in drug delivery therapies, medical diagnostic strategies, and as current Covid-19 vaccine carriers. Many microscope-based imaging systems have been introduced to facilitate detection and visualization of NPs. Unfortunately, none can differentiate the core and the shell of NPs. Spectral imaging has been used to distinguish a drug molecule and its metabolite. We have recently integrated this technology to a resolution of 9 nm by using artificial intelligence-driven analyses. Such a resolution allowed us to collect many robust datapoints for each pixel of an image. Our analyses could recognize 45 spectral points within a pixel to detect unlabeled Ag-NPs and Au-NPs in single live cells and tissues (liver, heart, spleen and kidneys). The improved resolution and software provided a more specific fingerprinting for each single molecule, allowing simultaneous analyses of 990 complex interactions from the 45 points for each molecule within a pixel of an image. This in turn allowed us to detect surface-functionalization of Ag-NPs to distinguish the core from the shell of Ag-NPs for the first time. Our studies were validated using various laborious and time-consuming conventional techniques. We propose that spectral imaging has tremendous potential to study NP localization and identification in biological samples at a high temporal and spatial resolution, based primarily on spectral identity information.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Inteligencia Artificial , Vacunas contra la COVID-19 , Oro , Humanos , Plata/análisis
6.
Pharmaceuticals (Basel) ; 16(1)2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36678540

RESUMEN

Co-expression of the epidermal growth factor receptor (EGFR, also known as ErbB1) and human epidermal growth factor receptor 2 (HER2) has been identified as a diagnostic or prognostic sign in various tumors. Despite the fact that lapatinib (EGFR/HER2 dual inhibitor) has shown to be successful, many patients do not respond to it or develop resistance for a variety of reasons that are still unclear. As a result, new approaches and inhibitory small molecules are still needed for EGFR/HER2 inhibition. Herein, novel lapatinib derivatives possessing 4-anilinoquinazoline and imidazole scaffolds (6a-l) were developed and screened as EGFR/HER2 dual inhibitors. In vitro and in silico investigations revealed that compound 6j has a high affinity for the ATP-binding regions of EGFR and HER2. All of the designed candidates were predicted to not penetrate the BBB, raising the expectation for the absence of CNS side effects. At 10 µM, derivatives possessing 3-chloro-4-(pyridin-2-ylmethoxy)aniline moiety (6i-l) demonstrated outstanding ranges of percentage inhibition against EGFR (97.65-99.03%) and HER2 (87.16-96.73%). Compound 6j showed nanomolar IC50 values over both kinases (1.8 nM over EGFR and 87.8 nM over HER2). Over EGFR, compound 6j was found to be 50-fold more potent than staurosporine and 6-fold more potent than lapatinib. A kinase selectivity panel of compound 6j showed poor to weak inhibitory activity over CDK2/cyclin A, c-MET, FGFR1, KDR/VEGFR2, and P38a/MAPK14, respectively. Structure-activity relationship (SAR) that were obtained with different substitutions were justified. Additionally, molecular docking and molecular dynamics studies revealed insights into the binding mode of the target compounds. Thus, compound 6j was identified as a highly effective and dual EGFR/HER2 inhibitor worthy of further investigation.

7.
Sci Rep ; 11(1): 2703, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33526869

RESUMEN

During drug development, evaluation of drug and its metabolite is an essential process to understand drug activity, stability, toxicity and distribution. Liquid chromatography (LC) coupled with mass spectrometry (MS) has become the standard analytical tool for screening and identifying drug metabolites. Unlike LC/MS approach requiring liquifying the biological samples, we showed that spectral imaging (or spectral microscopy) could provide high-resolution images of doxorubicin (dox) and its metabolite doxorubicinol (dox'ol) in single living cells. Using this new method, we performed measurements without destroying the biological samples. We calculated the rate constant of dox translocating from extracellular moiety into the cell and the metabolism rate of dox to dox'ol in living cells. The translocation rate of dox into a single cell for spectral microscopy and LC/MS approaches was similar (~ 1.5 pM min-1 cell-1). When compared to spectral microscopy, the metabolism rate of dox was underestimated for about every 500 cells using LC/MS. The microscopy approach further showed that dox and dox'ol translocated to the nucleus at different rates of 0.8 and 0.3 pM min-1, respectively. LC/MS is not a practical approach to determine drug translocation from cytosol to nucleus. Using various methods, we confirmed that when combined with a high-resolution imaging, spectral characteristics of a molecule could be used as a powerful approach to analyze drug metabolism. We propose that spectral microscopy is a new method to study drug localization, translocation, transformation and identification with a resolution at a single cell level, while LC/MS is more appropriate for drug screening at an organ or tissue level.


Asunto(s)
Doxorrubicina/farmacocinética , Animales , Línea Celular , Cromatografía Liquida , Evaluación de Medicamentos , Porcinos , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda