Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Sensors (Basel) ; 24(18)2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39338685

RESUMEN

This study investigates the efficacy of machine learning models for intrusion detection in the Internet of Medical Things, aiming to enhance cybersecurity defenses and protect sensitive healthcare data. The analysis focuses on evaluating the performance of ensemble learning algorithms, specifically Stacking, Bagging, and Boosting, using Random Forest and Support Vector Machines as base models on the WUSTL-EHMS-2020 dataset. Through a comprehensive examination of performance metrics such as accuracy, precision, recall, and F1-score, Stacking demonstrates exceptional accuracy and reliability in detecting and classifying cyber attack incidents with an accuracy rate of 98.88%. Bagging is ranked second, with an accuracy rate of 97.83%, while Boosting yielded the lowest accuracy rate of 88.68%.


Asunto(s)
Algoritmos , Seguridad Computacional , Internet de las Cosas , Aprendizaje Automático , Humanos , Máquina de Vectores de Soporte , Atención a la Salud
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda