Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Cent Sci ; 1(7): 374-382, 2015 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-26539563

RESUMEN

Extracellular signaling is commonly mediated through post-translational protein modifications that propagate messages from membrane-bound receptors to ultimately regulate gene expression. Signaling cascades are ubiquitously intertwined, and a full understanding of function can only be gleaned by observing dynamics across multiple key signaling nodes. Importantly, targets within signaling cascades often represent opportunities for therapeutic development or can serve as diagnostic biomarkers. Protein phosphorylation is a particularly important post-translational modification that controls many essential cellular signaling pathways. Not surprisingly, aberrant phosphorylation is found in many human diseases, including cancer, and phosphoprotein-based biomarker signatures hold unrealized promise for disease monitoring. Moreover, phosphoprotein analysis has wide-ranging applications across fundamental chemical biology, as many drug discovery efforts seek to target nodes within kinase signaling pathways. For both fundamental and translational applications, the analysis of phosphoprotein biomarker targets is limited by a reliance on labor-intensive and/or technically challenging methods, particularly when considering the simultaneous monitoring of multiplexed panels of phosphoprotein biomarkers. We have developed a technology based upon arrays of silicon photonic microring resonator sensors that fills this void, facilitating the rapid and automated analysis of multiple phosphoprotein levels from both cell lines and primary human tumor samples requiring only minimal sample preparation.

2.
Acta Biomater ; 10(11): 4715-4722, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25016280

RESUMEN

Biomolecular signals within the native extracellular matrix are complex, with bioactive factors found in both soluble and sequestered states. In the design of biomaterials for tissue engineering applications it is increasingly clear that new approaches are required to locally tailor the biomolecular environment surrounding cells within the matrix. One area of particular focus is strategies to improve the speed or quality of vascular ingrowth and remodeling. While the addition of soluble vascular endothelial growth factor (VEGF) has been shown to improve vascular response, strategies to immobilize such signals within a biomaterial offer the opportunity to optimize efficiency and to explore spatially defined patterning of such signals. Here we describe the use of benzophenone (BP) photolithography to decorate three-dimensional collagen-glycosaminoglycan (CG) scaffolds with VEGF in a spatially defined manner. In this effort we demonstrate functional patterning of a known agonist of vascular remodeling and directly observe phenotypic effects induced by this immobilized cue. VEGF was successfully patterned in both stripes and square motifs across the scaffold with high specificity (on:off pattern signal). The depth of patterning was determined to extend up to 500 µm into the scaffold microstructure. Notably, photopatterned VEGF retained native functionality as it was shown to induce morphological changes in human umbilical vein cells indicative of early vasculogenesis. Immobilized VEGF led to greater cell infiltration into the scaffold and the formation of immature vascular network structures. Ultimately, these results suggest that BP-mediated photolithography is a facile method to spatially control the presentation of instructive biological cues to cells within CG scaffolds.


Asunto(s)
Colágeno/química , Glicosaminoglicanos/química , Células Endoteliales de la Vena Umbilical Humana/citología , Andamios del Tejido/química , Rayos Ultravioleta , Factor A de Crecimiento Endotelial Vascular/farmacología , Animales , Benzofenonas/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Proteínas Inmovilizadas/farmacología , Fenotipo , Tiburones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda