Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Am J Respir Crit Care Med ; 208(4): 472-486, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37406359

RESUMEN

Rationale: Emerging data demonstrate that the smallest conducting airways, terminal bronchioles, are the early site of tissue destruction in chronic obstructive pulmonary disease (COPD) and are reduced by as much as 41% by the time someone is diagnosed with mild (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1) COPD. Objectives: To develop a single-cell atlas that describes the structural, cellular, and extracellular matrix alterations underlying terminal bronchiole loss in COPD. Methods: This cross-sectional study of 262 lung samples derived from 34 ex-smokers with normal lung function (n = 10) or GOLD stage 1 (n = 10), stage 2 (n = 8), or stage 4 (n = 6) COPD was performed to assess the morphology, extracellular matrix, single-cell atlas, and genes associated with terminal bronchiole reduction using stereology, micro-computed tomography, nonlinear optical microscopy, imaging mass spectrometry, and transcriptomics. Measurements and Main Results: The lumen area of terminal bronchioles progressively narrows with COPD severity as a result of the loss of elastin fibers within alveolar attachments, which was observed before microscopic emphysematous tissue destruction in GOLD stage 1 and 2 COPD. The single-cell atlas of terminal bronchioles in COPD demonstrated M1-like macrophages and neutrophils located within alveolar attachments and associated with the pathobiology of elastin fiber loss, whereas adaptive immune cells (naive, CD4, and CD8 T cells, and B cells) are associated with terminal bronchiole wall remodeling. Terminal bronchiole pathology was associated with the upregulation of genes involved in innate and adaptive immune responses, the interferon response, and the degranulation of neutrophils. Conclusions: This comprehensive single-cell atlas highlights terminal bronchiole alveolar attachments as the initial site of tissue destruction in centrilobular emphysema and an attractive target for disease modification.


Asunto(s)
Asma , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Estudios Transversales , Microtomografía por Rayos X , Elastina , Pulmón , Asma/complicaciones
2.
Matrix Biol ; 132: 47-58, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147560

RESUMEN

BACKGROUND: Lung fibroblasts play a central role in maintaining lung homeostasis and facilitating repair through the synthesis and organization of the extracellular matrix (ECM). This study investigated the cross-talk between interleukin-1 alpha (IL-1α) and transforming growth factor-ß (TGF-ß) signaling, two key regulators in tissue repair and fibrosis, in the context of lung fibroblast repair in the healthy lung. RESULTS: Stimulation of lung fibroblasts with TGF-ß1 and TGF-ß2 induced collagen-I and fibronectin protein expression (p < 0.05), a response inhibited with co-treatment with IL-1α (p < 0.05). Additionally, TGF-ß1 and TGF-ß2 induced myofibroblast differentiation, and collagen-I gel contraction, which were both suppressed by IL-1α (p < 0.05). In contrast, interleukin (IL)-6, IL-8 and thymic stromal lymphopoietin induced by IL-1α, were unaffected by TGF-ß1 or TGF-ß2. Mechanistically, IL-1α administration led to the suppression of TGF-ß1 and TGF-ß2 signaling, through downregulation of mRNA and protein for TGF-ß receptor II and the downstream adaptor protein TRAF6, but not through miR-146a that is known to be induced by IL-1α. DISCUSSION: IL-1α acts as a master regulator, modulating TGF-ß1 and TGF-ß2-induced ECM production, remodeling, and myofibroblast differentiation in human lung fibroblasts, playing a vital role in balancing tissue repair versus fibrosis. Further research is required to understand the dysregulated cross-talk between IL-1α and TGF-ß signaling in chronic lung diseases and the exploration of therapeutic opportunities. METHODS: Primary human lung fibroblasts (PHLF) were treated with media control, or 1 ng/ml IL-1α with or without 50 ng/ml TGF-ß1 or TGF-ß2 for 1, 6 and 72 h. Cell lysates were assessed for the expression of ECM proteins and signaling molecules by western blot, miRNA by qPCR, mRNA by RNA sequencing and cell supernatants for cytokine production by ELISA. PHLFs were also seeded in non-tethered collagen-I gels to measure contraction, and myofibroblast differentiation using confocal microscopy.


Asunto(s)
Matriz Extracelular , Fibroblastos , Interleucina-1alfa , Pulmón , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Humanos , Interleucina-1alfa/metabolismo , Interleucina-1alfa/genética , Matriz Extracelular/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Pulmón/metabolismo , Pulmón/citología , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/citología , Diferenciación Celular , Miofibroblastos/metabolismo , Miofibroblastos/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Colágeno Tipo I/genética , MicroARNs/genética , MicroARNs/metabolismo , Fibronectinas/metabolismo , Fibronectinas/genética , Regulación de la Expresión Génica/efectos de los fármacos , Factor de Crecimiento Transformador beta2
3.
Infect Chemother ; 54(2): 275-286, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35706082

RESUMEN

BACKGROUND: Acinetobacter baumannii is one of the most important hospital pathogenic bacteria that cause infectious diseases. The present study aimed to determine the frequency of carbapenem resistance genes in association with transposable elements and molecular typing of carbapenem-resistant A. baumannii bacteria collected from patients in Shiraz, Iran. MATERIALS AND METHODS: A total of 170 carbapenem-resistant A. baumannii isolates were obtained from different clinical specimens in two hospitals. The minimum inhibitory concentrations (MIC) of imipenem were determined and the prevalence of OXA Carbapenemases, Metallo-ß-lactamases genes, insertion sequences (IS) elements, and transposons were evaluated by the polymerase chain reaction (PCR) method. Finally, molecular typing of the isolates was performed by the Enterobacterial Repetitive Intergenic Consensus-PCR method. RESULTS: The MICs ranged from 16 to 1,024 µg/mL for imipenem-resistant A. baumannii isolates. Out of the 170 carbapenem resistant A. baumannii isolates, blaOXA-24-like (94, 55.3%) followed by blaOXA-23-like (71, 41.7%) were predominant. In addition, A. baumannii isolates carried blaVIM (71, 41.7%), blaGES (32, 18.8%), blaSPM (4, 2.3%), and blaKPC (1, 0.6%). Moreover, ISAba1 (94.2%) and Tn2009 (39.2%) were the most frequent transposable elements. Furthermore, (71, 44.0%) and (161, 94.7%) of the ISAba1 of the isolates were associated with blaOXA-23 and blaOXA-51 genes, respectively. Besides (3, 1.7%), (1, 0.6%) and (5, 2.9%) of blaOXA-23 were associated with IS18, ISAba4, and ISAba2, respectively. Considering an 80.0% cut off, clusters and four singletons were detected. CONCLUSION: According to the results, transposable elements played an important role in the development of resistance genes and resistance to carbapenems. The results also indicated carbapenem-resistant A. baumannii bacteria as a public health concern.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda