RESUMEN
Incorporation of giant molecular nanoparticles with atomic precision into chiral nanoassemblies facilitates the fabrication of functional ordered phases with supramolecular chirality, which remains mysterious. Reported here is the first example of polyhedral oligosilsesquioxane (POSS) derivatives that self-assemble into well-defined chiral nanoassemblies. POSSs were covalently conjugated to N-terminal aromatic amino acids, which self-assembled into nanohelices and twists with explicit handedness tuned by solvent polarity. Chiral nanoassemblies showed active chiroptical responses including Cotton effects and circularly polarized luminescence. The chiral systems can bind guest molecules by charge-transfer interactions, whereby self-assembled structures, chiroptical activities, and luminescent colors were further modulated. The unique coassembly systems were applied for instant information encryption and storage with multiple luminescent displays. This work offers a new protocol for the design of functional chiral materials of POSS by molecular self-assembly.
RESUMEN
Hypervalent iodine(III) have widely been utilized for organic synthetic reagents. They are also recognized as positive charge-assisted, exceptionally robust biaxial halogen bond donors, while their potential in supramolecular materials is barely explored. This work reports a cyclic diaryliodonium ion as biaxial halogen bonding donor that displays remarkable binding affinity toward phenanthroline or acridine acceptors with chiral pendants. Biaxial halogen bonding enables chiroptical evolution in solution, allowing for rational control over supramolecular chirality. Leveraging their strong binding affinity, the halogen bonding complexes manifested amorphous properties and deep eutectic behavior in the solid state. Capitalizing on these attributes, this work achieves the successful preparation of supramolecular glasses and deep eutectic solvents. Additionally, halogen bonding appended light irradiation-triggered luminescence through a hydrogen atom transfer process, showing applications in anti-counterfeit and display.
RESUMEN
Axial chiral molecules are extensively used as skeletons in ligands for asymmetric catalysis and as building blocks of chiroptical materials. Designing axial chirality at the supramolecular level potentially endows a material with dynamic tunability and adaptivity. In this work, for the first time, we have reported a series of halogen-bonded dimeric complexes with axial chirality that were formed by noncovalent bonds. The [N-I-N]+-type halogen bond is highly directional and freely rotatable with good linearity and ultra-high bond energy; this bond was introduced to couple quinoline moieties with chiral substitutes. The resultant dimers were stable in solutions with thermo-resistance. Prominent steric effects from the 2' chiral pendant allowed the chirality to be transferred to aryl skeletons with induced preferred axial chirality and optical activities. Halogen-bonded complexation presented visible emissions to afford luminescent axial chiral materials, whereby circularly polarized fluorescence and phosphorescence were achieved. The [N-I-N]+-type halogen bond performed as a powerful tool to construct functional axial chiral compounds, enriching the toolbox for asymmetric synthesis and optics.
RESUMEN
The [N···I···N]+ type halogen bond has been utilized to synthesize supramolecular architectures, while the applications in constructing helical motifs and modulating supramolecular chirality have been unexplored so far. In this work, the [N···I···N]+ halogen bond was introduced to drive the formation of supramolecular helical polymers via a Ag(I) coordination intermediate, showing tunable supramolecular chirality. Pyridine segments were conjugated to the asymmetric ferrocene skeleton, which show "open" and "closed" geometry depending on the sp2 N positions. Coordination with Ag(I) generated one-dimensional (1D) double helices and 2D helicates featured the [Ag(O)···I···Ag(O)]+ bond, which further stacked into 3D porous frameworks with chiral channels and adjustable pore sizes. Ionic exchange afforded 1D supramolecular helical polymers in solution phases driven by the [N···I···N]+ type halogen bonds, which was evidenced by the experimental results and density functional theory calculation. Fc2 exclusively demonstrated tunable supramolecular chirality in the formation of coordinated and halogen bonded polymers. In addition, solvent change would further inverse the helicity of halogen bonded supramolecular helical polymers depending on the rotation of the ferrocenyl core whose "closed" and "open" states were accompanied by the breakage of intramolecular hydrogen bonds. This work introduces a [N···I···N]+ type ionic halogen bond to prepare supramolecular helical polymers, providing multiple protocols in regulating helicity by ion exchange and solvent environments.
RESUMEN
The combination of circularly polarized luminescence (CPL) and pure-organic room temperature phosphorescence (RTP) potentially facilitates the construction of organic chiroptical optoelectronics and display materials, which however are challenging to use in realizing smart control of luminescent colors and switchable chiroptical properties. Here, we show a host-guest strategy to fabricate color-tunable RTP-based circularly polarized phosphorescence. Napthalimides were conjugated directly to chiral segments, of which supramolecular chirality and CPL activities in solid-states could be triggered by substituting bromine atoms on amines. Introducing tetracyanobenzene as an achiral host matrix via simple grinding would allow for the intersystem crossing to trigger red RTP and corresponding CPL by excitation lower than 320 nm, with a large Stokes shift more than 300 nm. The critical excitation wavelength of the RTP switch is determined by the absorbance of tetracyanobenzene. When the excitation wavelength was larger than 320 nm, blue fluorescence dominated with turned off RTP and CPL. The excitation wavelength-dependent RTP and CPL switch allows for detecting ultraviolet (UV) light, showing distinguishable red-blue luminescent color transition, accompanied by on/off RTP. Changing the host matrix from tetracyanobenzene to tricyanobenzene or dicyanobenzene could adjust the critical detecting wavelength limit from 320 to 300 nm. This work establishes a strategy to realize color-tunable, UV light detectable RTP and CPL under smart control.
RESUMEN
As a highly directional force, halogen bonds based on σ-holes have potential to manipulate supramolecular chirality and build functional chiral systems, which however are largely unexplored. In this work, we report the manipulation of supramolecular chirality in hierarchically self-assembled systems via intracomponent halogen bonds. Cholesteryl cyanostilbene conjugates and 1,3,5-trifluoro-2,4,6-triiodobenzene formed a C3 symmetrical supramolecular complex with ultrahigh binding affinity and binding constants at 1011 order of magnitude. The halogen bonded propeller geometries exhibited inversed chirality as well as chiroptical activity compared to the pristine helically orientated aggregates. Halogen bonds enabled the engineering of nanoarchitectures, affording supercoiled helical structures and highly aligned nanotubes. This work unveils the role of halogen bonds in controlling supramolecular chirality, establishing a protocol to build functional chiroptical materials from species containing σ-holes and halogenated domains.
RESUMEN
In order to break the aging crude oil (WACO) emulsion of the offshore platform more effectively, a highly active isocyanate, polyaryl polymethylene isocyanate (PAPI), was selected to modify the pilot-scale tannic acid demulsifier. In the addition of PAPI, its molecular weight and viscosity dramatically increased, while its relative solubility, hydroxyl number, and cloud point exhibited an opposite direction, showing an increase in hydrophobicity. After adding the above modified demulsifier, a remarkably improved water removal of WACO emulsion accompanied by a notable reduction of the water content in the oil phase monitored by the Karl Fischer method was observed. Demulsification on the offshore platform demonstrated that the best water removal was achieved when the proportion of PAPI is 1.5 wt %. Its demulsification efficiency reached 95.7%, which was 25.6% higher than the 76.2% of unmodified demulsifier. In addition, a positive correlation between viscoelasticity of emulsion and demulsification performance was found by only adjusting the parameters of the rheometer. This method may be utilized to characterize the demulsification performance by any rotary rheometer. The pilot-scale demulsification experiment demonstrated that the water removal can reach 98.14 vol % and residual water content was only 0.55 vol %. These results further confirmed the excellent demulsification performance of the modified demulsifier toward the WACO emulsion in production.