Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Inorg Chem ; 52(24): 13875-81, 2013 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-24261544

RESUMEN

A novel host lattice disodium calcium ditin(IV) trigermanium oxide Na2CaSn2Ge3O12 was utilized for synthesizing long-persistent phosphorescence materials for the first time. Reddish orange long-persistent phosphorescence was observed in Na2CaSn2Ge3O12:Sm(3+) phosphors with persistence time more than 4.8 h. The phosphors were synthesized by a conventional solid-state reaction pathway in air atmosphere. A predominant cubic phase of Na2CaSn2Ge3O12 was observed in all XRD patterns. Photoluminescence measurements indicated that the emission spectrum was composed of the peaks located at 566 (the strongest), 605, 664, and 724 nm. The results of the decay curves in terms of a biexponential model suggest that different defects appear in the crystal lattice. The defects acting as traps were investigated by thermoluminescence, which demonstrated that doping Sm(3+) ions into the Na2CaSn2Ge3O12 host has made the trap types abundant. Furthermore, the origin of the long-persistent phosphorescence has also been discussed. On the basis of the above results, Sm(3+)-doped Na2CaSn2Ge3O12 phosphors are considered to have potential practical applications.

2.
Sci Total Environ ; 848: 157784, 2022 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-35926601

RESUMEN

Accelerated melting of mountain glaciers due to global warming has a significant impact on downstream biogeochemical evolution because a large amount of labile dissolved organic matter (DOM) is released. However, the DOM evolution processes from glacier to downstream are not well understood. To investigate these processes, samples from the glacial surface and terminating runoff of a mountain glacier on the Tibetan Plateau were collected simultaneously throughout the melting season. The samples were analyzed to determine the dissolved organic carbon (DOC) contents and chemical compositions by means of a combination of fluorescence excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results indicate that the DOC concentrations were higher in the snow samples than in the glacial runoff samples, although a significantly higher concentration of inorganic ions was found in the glacial runoff samples, suggesting the dominant source of DOM in the glacial runoff was the glacier. The EEM-PARAFAC revealed four fluorescent components in both the snow and glacial runoff samples. However, significantly different ratios between the four components of these two categories of samples suggested chemical, physical and/or biological evolution of DOM during transport. Molecular chemical composition analyses by FT-ICR MS revealed that the DOM composition varied dramatically between the glacier and the glacial runoff. More than 50 % of the molecules were transformed from aliphatic and peptide-like compounds in the snow samples into highly unsaturated and phenolic-like compounds in the glacial runoff samples. The potential chemical transformation of DOM was likely related to biological and/or photolytic evolution during transport. Our results suggest that chemical evolution of glacial DOM could occur during the downstream transport, which is expected to be useful for further research exploring the fate of DOM and carbon cycling from the cryospheric environment and evaluating the biogeochemical effects.


Asunto(s)
Materia Orgánica Disuelta , Cubierta de Hielo , Carbono , Cubierta de Hielo/química , Iones , Tibet
3.
Sci Rep ; 10(1): 6123, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-32273519

RESUMEN

The metamorphism of snow (snowmelt process) has a potential influence on chemical and physical process occurring within it. This study carried out a detailed study on the variation of dissolved organic matter (DOM) in different stages of snowmelt in a typical mountain glacier located at Tibetan Plateau through collecting four different surface snow/ice categories, i.e., fresh snow, fine firn, coarse firn, and granular ice during May to October in 2015. The dissolved organic carbon (DOC) was observed by lost 44% from fresh snow to fine firn and enriched 129% from fine firn to granular ice, reflecting the dynamic variability in DOC concentration during snow metamorphism. The absorbance properties of each snow category are positively correlated with DOC concentration. The result of excitation emission matrix fluorescence with parallel factor analysis (EEM-PARAFAC) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) highlighted the domination of lipid- and protein-like compounds in glacial-derived DOM. The molecular composition of the DOM also exhibited a new N-containing molecular formula (CHON classes) that was enriched during snow metamorphism. This study suggests that snow metamorphism could induce a loss of DOM as well as enrich and modify the DOM.

4.
J Colloid Interface Sci ; 311(2): 507-13, 2007 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-17383673

RESUMEN

A simple method for the fabrication of silica nanoparticle film based on the covalent-bonding interaction between carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) and amino-terminated silicon wafer was developed. Prior to assembly, silica nanoparticles with an average diameter 80 nm were prepared using the Stöber method, amino-functionalized silica nanoparticles (SiO(2)-NH(2)) were prepared by a silanization with 3-aminopropyltriethoxysilane (APTES), while carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) were prepared by a ring opening linker elongation reaction of the amine functions with succinic anhydride, at the same time, amino-terminated silicon wafer (Si-NH(2)) was obtained by self-assembling 3-aminopropyltriethoxysilane, then one layer relative close-packed carboxylic acid-functionalized silica nanoparticles (SiO(2)-COOH) was arranged on silicon wafer through amidation reaction under DCC coupling agent.

5.
Nanoscale Res Lett ; 4(5): 414-419, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-20596434

RESUMEN

Highly ordered mesoporous CdS nanowire arrays were synthesized by using mesoporous silica as hard template and cadmium xanthate (CdR(2)) as a single precursor. Upon etching silica, mesoporous CdS nanowire arrays were produced with a yield as high as 93 wt%. The nanowire arrays were characterized by XRD, N(2) adsorption, TEM, and SEM. The results show that the CdS products replicated from the mesoporous silica SBA-15 hard template possess highly ordered hexagonal mesostructure and fiber-like morphology, analogous to the mother template. The current-voltage characteristics of CdS nanoarrays are strongly nonlinear and asymmetrical, showing rectifying diode-like behavior.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda