RESUMEN
In the field of learning theory and practice, the superior efficacy of multisensory learning over uni-sensory is well-accepted. However, the underlying neural mechanisms at the macro-level of the human brain remain largely unexplored. This study addresses this gap by providing novel empirical evidence and a theoretical framework for understanding the superiority of multisensory learning. Through a cognitive, behavioral, and electroencephalographic assessment of carefully controlled uni-sensory and multisensory training interventions, our study uncovers a fundamental distinction in their neuroplastic patterns. A multilayered network analysis of pre- and post- training EEG data allowed us to model connectivity within and across different frequency bands at the cortical level. Pre-training EEG analysis unveils a complex network of distributed sources communicating through cross-frequency coupling, while comparison of pre- and post-training EEG data demonstrates significant differences in the reorganizational patterns of uni-sensory and multisensory learning. Uni-sensory training primarily modifies cross-frequency coupling between lower and higher frequencies, whereas multisensory training induces changes within the beta band in a more focused network, implying the development of a unified representation of audiovisual stimuli. In combination with behavioural and cognitive findings this suggests that, multisensory learning benefits from an automatic top-down transfer of training, while uni-sensory training relies mainly on limited bottom-up generalization. Our findings offer a compelling theoretical framework for understanding the advantage of multisensory learning.
Asunto(s)
Encéfalo , Aprendizaje , Humanos , Plasticidad Neuronal , Percepción Auditiva , Percepción VisualRESUMEN
OBJECTIVES: LifeChamps is an EU Horizon 2020 project that aims to create a digital platform to enable monitoring of health-related quality of life and frailty in patients with cancer over the age of 65. Our primary objective is to assess feasibility, usability, acceptability, fidelity, adherence, and safety parameters when implementing LifeChamps in routine cancer care. Secondary objectives involve evaluating preliminary signals of efficacy and cost-effectiveness indicators. DATA SOURCES: This will be a mixed-methods exploratory project, involving four study sites in Greece, Spain, Sweden, and the United Kingdom. The quantitative component of LifeChamps (single-group, pre-post feasibility study) will integrate digital technologies, home-based motion sensors, self-administered questionnaires, and the electronic health record to (1) enable multimodal, real-world data collection, (2) provide patients with a coaching mobile app interface, and (3) equip healthcare professionals with an interactive, patient-monitoring dashboard. The qualitative component will determine end-user usability and acceptability via end-of-study surveys and interviews. CONCLUSION: The first patient was enrolled in the study in January 2023. Recruitment will be ongoing until the project finishes before the end of 2023. IMPLICATIONS FOR NURSING PRACTICE: LifeChamps provides a comprehensive digital health platform to enable continuous monitoring of frailty indicators and health-related quality of life determinants in geriatric cancer care. Real-world data collection will generate "big data" sets to enable development of predictive algorithms to enable patient risk classification, identification of patients in need for a comprehensive geriatric assessment, and subsequently personalized care.
Asunto(s)
Fragilidad , Neoplasias , Humanos , Anciano , Estudios de Factibilidad , Calidad de Vida , Encuestas y CuestionariosRESUMEN
Recent advancements in the field of network science allow us to quantify inter-network information exchange and model the interaction within and between task-defined states of large-scale networks. Here, we modeled the inter- and intra- network interactions related to multisensory statistical learning. To this aim, we implemented a multifeatured statistical learning paradigm and measured evoked magnetoencephalographic responses to estimate task-defined state of functional connectivity based on cortical phase interaction. Each network state represented the whole-brain network processing modality-specific (auditory, visual and audiovisual) statistical learning irregularities embedded within a multisensory stimulation stream. The way by which domain-specific expertise re-organizes the interaction between the networks was investigated by a comparison of musicians and non-musicians. Between the modality-specific network states, the estimated connectivity quantified the characteristics of a supramodal mechanism supporting the identification of statistical irregularities that are compartmentalized and applied in the identification of uni-modal irregularities embedded within multisensory stimuli. Expertise-related re-organization was expressed by an increase of intra- and a decrease of inter-network connectivity, showing increased compartmentalization.
Asunto(s)
Música , Estimulación Acústica , Percepción Auditiva/fisiología , Encéfalo/fisiología , Mapeo Encefálico , Aprendizaje/fisiología , MagnetoencefalografíaRESUMEN
Understanding the neuroplastic capacity of people with Down syndrome (PwDS) can potentially reveal the causal relationship between aberrant brain organization and phenotypic characteristics. We used resting-state EEG recordings to identify how a neuroplasticity-triggering training protocol relates to changes in the functional connectivity of the brain's intrinsic cortical networks. Brain activity of 12 PwDS before and after a 10-week protocol of combined physical and cognitive training was statistically compared to quantify changes in directed functional connectivity in conjunction with psychosomatometric assessments. PwDS showed increased connectivity within the left hemisphere and from left-to-right hemisphere, as well as increased physical and cognitive performance. Our findings reveal a strong adaptive neuroplastic reorganization as a result of the training that leads to a less-random network with a more pronounced hierarchical organization. Our results go beyond previous findings by indicating a transition to a healthier, more efficient, and flexible network architecture, with improved integration and segregation abilities in the brain of PwDS. Resting-state electrophysiological brain activity is used here for the first time to display meaningful relationships to underlying Down syndrome processes and outcomes of importance in a translational inquiry. This trial is registered with ClinicalTrials.gov Identifier NCT04390321.