Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Ecotoxicol Environ Saf ; 208: 111765, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33396084

RESUMEN

Recent studies have shown that organisms including humans are exposed to microplastics directly or indirectly. The present study aims to examine the ingestion of these microplastics and the consequences of the same by studying the accumulation behavior of weathered Polyethylene (wPE) microplastics. The Perna viridis were exposed chronically to three different environmentally relevant concentrations of wPE for 30 days, followed by a one-week depuration phase. There was no mortality observed in the control and exposed groups, but the feeding rate was observed to have substantially decreased in the group exposed to higher concentration (3 µgL-1) of wPE. It was also observed that a higher number of wPE particles accumulated in the intestine of exposed organisms. Interestingly, the present study revealed the presence of the substantial number of wPE particles in exposed organisms, which may adversely affect the internal organs as well as growth and reproduction. This study perceived that accumulation is marginally influenced by size of wPE. Similarly, biomarker analysis showed that wPE exposure significantly altered both the metabolism and histology of the internal organs of the exposed organisms. Overall, the study confirmed that the intestine was the most sensitive organ followed by gills, adductor muscles, and foot tissue adding new insights into the adverse effects of wPE in the marine ecosystem.


Asunto(s)
Microplásticos/toxicidad , Perna/fisiología , Polietileno/metabolismo , Contaminantes Químicos del Agua/metabolismo , Animales , Ecosistema , Ecotoxicología , Branquias/efectos de los fármacos , Humanos , Microplásticos/metabolismo , Perna/efectos de los fármacos , Plásticos , Polietileno/toxicidad , Alimentos Marinos/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
2.
Sci Total Environ ; 866: 161363, 2023 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-36610620

RESUMEN

Anthropogenic marine litter (AML), mainly plastic, is a global concern that is persistent and widespread. To prevent and mitigate this threat, we need to understand the magnitude and source of AML. There is limited knowledge about AML pollution on the Indian Coast. In this context, the present study examined the distribution, abundance, typology, and beach quality based on AML along 22 beaches on the southeastern coast of the Arabian Sea. A total of 4911 AML items were classified into 9 categories, weighing 16.79 kg, and retrieved from a total area of 8000 m2. The mean abundance and weight of AML in the current study were 0.45 ± 0.34 items/m2 and 1.53 ± 0.92 g/m2, respectively. Thottapally showed the most abundant AML among the studied beaches with 0.96 items/m2, followed by Azheekkal with 0.73 items/m2. Plastic, being the most common item, accounts for 77.6 % of all items and has a mean density of 0.35 items/m2 comprising hard plastic (22 %), thermocol (13 %), food wrappers (7 %), cigarette butts (7 %), plastic rope (6 %), and plastic cutlery (6 %). Hazardous anthropogenic litter (HAL) was maximum at Thottapally (17.71 %; 85 out of 480 items collected). Based on the cleanliness of beaches, they are graded "moderately clean" (63 %) by the General Index (GI), "clean" (54 %), and "moderately clean" (40 %) as calculated by the Clean Coast Index (CCI). Hazardous Anthropogenic Beach Litter Index (HABLI) classifies 72 % of beaches as "moderately safe", while the Environmental Status Index (ESI) rates 68 % of beaches as "mediocre". Besides, model simulations demonstrated the pathways of AML propagation, which correlate to the littoral and coastal current flow patterns over the region. Land-based activities were the crucial factors influencing AML distribution. The study highlighted the need for effective regional litter management strategies, policy instruments for the litter impact pathways, economic, regulatory, and behavioural management tools, which were also discussed.

3.
Chemosphere ; 300: 134487, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35381267

RESUMEN

Weathered plastic litter is recognized as hazardous secondary microplastics(MPs) in the coastal and marine ecosystems, which are of high concern due to their greater impact on the environment. The present study aims to elucidate the impacts of environmentally weathered polyethylene (wPE) MPs on ingestion, growth and enzymatic responses in Penaeus vannamei. The Penaeus vannamei was chronically exposed to five varying concentration (0.1 mg-0.5 mg) of wPE particles in the size range between 43 and 32 µm for a period of 25days, followed by 5days depuration. At the end of exposure, a considerable number of wPE particles were observed from <2 to 14 per individual organism. However, around 60% of the wPE particles were removed after the depuration phase. The toxic exposure on P. vannamei resulted in significant changes in the enzymatic and growth responses with increasing concentration and duration. In addition, growth assessment confirmed that wPE exposure inhibited the growth of organism, and the effect was particularly evident at increasing concentrations and prolonged exposure. Also observed an elevated levels of lipid peroxidation, glutathione-S-transferases, whereas lower levels of reduced-glutathione and catalase at all exposed concentrations. This study confirmed that the ingestion of wPE was completely influenced by exposure duration, rather than the concentrations of administered. The present biomarker assay might act as an appropriate oxidative stress index for wPE toxicity. Findings of this study is useful in providing the basic biological information for environmental risk assessments of MPs, which are of high concern due to the rising input of microplastics into the environment.


Asunto(s)
Penaeidae , Contaminantes Químicos del Agua , Animales , Ingestión de Alimentos , Ecosistema , Glutatión , Microplásticos/toxicidad , Plásticos/toxicidad , Polietileno/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
4.
Environ Pollut ; 280: 116954, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33773306

RESUMEN

Marine litter is widely distributed in marine environments and has been a severe concern worldwide, due to the disposal of waste from diverse sources. The severity of this threat has garnered increasing attention in India over the last decade, but the full consequences of this pollution are yet to be quantified. To estimate the spatiotemporal distribution, composition and beach quality of marine litter pollution, 17 beaches along the Hooghly estuary, a part of the Gangetic delta was studied. Marine litter was collected from 100 m long transects during two seasons (monsoon and post-monsoon). The OSPAR monitoring standard was applied to the 16,597 litter items collected, then grouped under 6 types and 44 categories. In terms of number, litter abundance was higher during monsoon (1.10 ± 0.39 items/m2) than that of post-monsoon (0.86 ± 0.32 items/m2). Most of the beaches were categorized as low cleanliness as computed by the general index and clean coast index and the good for the pellet pollution index. Hazardous litter constituted 6.5% of the total collected litter items. The model prediction revealed that the influence of high discharge from Hooghly, Rasulpur and Subarnarekha River carried enormous anthropogenic litter to the northeast beaches. The litter flux decreases with an increase in distance from the shore, and act as a sink to the sea-floor. The results denote that the distribution and typology of marine litter were representatives of household, tourism and fishing, which in turn highlights the need for better regional litter management measures. Suggested management practices include source reduction, mitigation, management of beach environment and change in littering behaviour through environmental education.


Asunto(s)
Playas , Plásticos , Monitoreo del Ambiente , India , Residuos/análisis
5.
Sci Total Environ ; 703: 134947, 2020 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-31734498

RESUMEN

Plastics in the marine environment are introduced through multiple pathways, and pose serious threats to aquatic biota. Recently microplastic pollution and its possible consequences in India have been recognized by the scientific community, however the extent of the crisis has not yet been quantified. The present study attempted to ascertain the abundance, distribution and characteristics of microplastics in coastal waters (14 locations), beach sediments (22 locations) and marine fishes (11 locations) from the state of Kerala, southwest coast of India. The results showed that the mean microplastic abundance was 1.25 ±â€¯0.88 particles/m3 in coastal waters and 40.7 ±â€¯33.2 particles/m2 in beach sediments with higher concentrations in the southern coast of the state. The abundance of microplastics, mostly contributed by fragments, fibre/line and foam, in both coastal waters and beach sediments, were highly influenced by river runoff and proximity to urban agglomeration. Fourier Transform Infrared Spectroscopy-Attenuated Total Reflection (FTIR-ATR) revealed that polyethylene (PE) and polypropylene (PP) were the dominant polymers in the marine environment. The digestive tracts of 15 out of 70 commercially important fishes studied, contained 22 microplastic particles. Polyethylene (PE; 38.46%) followed by cellulose (CE; 23.08%), rayon (RY; 15.38%), polyester (PL; 15.38%) and polypropylene (PP; 7.69%) were the major contributors in the fish ingested microplastic composition. A broad range of heavy metals, metalloids and other elements that are potentially indicative of hazardous chemicals were present in microplastics collected from the beaches of Kerala. These results enhance our understanding on the sources, transport pathways and the associated environmental risks of microplastics to marine ecosystems.


Asunto(s)
Monitoreo del Ambiente , Microplásticos/análisis , Contaminantes Químicos del Agua/análisis , Animales , Ecosistema , Contaminación Ambiental , Peces , Sedimentos Geológicos , India , Poliésteres , Polietileno , Polipropilenos , Espectroscopía Infrarroja por Transformada de Fourier
6.
Sci Total Environ ; 645: 1388-1399, 2018 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-30248861

RESUMEN

Occurrence of microplastics (plastic debris <5 mm) along the coast is a growing concern worldwide, due to increased input of discarded wastes from various sources. In order to evaluate the extent of microplastic pollution on the sandy beaches (25 locations) along Tamil Nadu coast (1076 km), India, microplastic debris were quantified and categorized into four different size classes. The beaches were classified according to potential sources of pollution i.e. riverine, tourism and fisheries. Beach samples collected from the high tide line contained significantly higher abundance of microplastic than at the low tide line. Beaches adjacent to rivers exhibited relatively higher microplastic abundance compared to those influenced by tourism and fishing activities. Out of the total detected debris, plastic fragments were the maximum (47-50%), followed by line/fibres (24-27%) and foam (10-19%) materials. Fourier Transform Infrared Spectroscopy (FTIR) analysis revealed that polyethylene, polypropylene, and polystyrene were the main types of microplastics present in these beaches. Gut content analysis of commercially important fishes, collected from the coastal waters, revealed microplastics ingestion in 10.1% of fishes. The results indicate that microplastics accumulation in the coastal environment, especially close to the river mouths, may be a serious concern, due to its ability to enter into the marine food web and highlights the necessity of microplastics screening from estuarine, coastal waters and other potential sources.

7.
Zool Stud ; 54: e51, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-31966138

RESUMEN

BACKGROUND: Comparing meiofaunal assemblages in the seagrass zone with bare sediment will provide information on the structuring factors and phytal preferences of meiobenthic invertebrates since differences in density and diversity of meiofauna are to be expected between vegetated and bare zones. RESULTS: A total of 11 groups of meiofauna, with harpacticoids dominating (51 %) and comprising 48 species within 14 families, have been identified. At all localities, the following harpacticoids were found to be relatively abundant, contributing 30.9 % of all harpacticoids: Longipedia weberi, Canuellina nicobaris, Scottolana longipes, and Parastenhelia hornelli. A highly significant correlation (r = 0.987, r 2 = 0.974, F (1,9) = 337.3, P < 0.001) of meiofaunal assemblage was found between seagrass leaf blades and the canopy sediment compared to bare sediment which was found to have a moderate correlation (r = 0.543, r 2 = 0.294, F (1,9) = 3.756, P = 0.085). In addition, the abundance of harpacticoids was significantly higher (ANOVA, F (2,144) = 19.53, P < 0.001) in seagrass sediments and differed markedly from blades and bare sediments, and the composition was unique in the different zones of the present study. CONCLUSIONS: Productive seagrass ecosystems are as yet inadequately studied in the Andaman Islands. This study provides a first step to characterize a faunal group from the seagrass community.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda