Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; : e202405250, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782715

RESUMEN

Top-down control of small motion is possible through top-down controlled molecular motors in replacement of larger actuators like MEMS or NEMS (micro- or nano-electromechanical systems) in the current precision technology. Improving top-down control of molecular motors to every single step is desirable for this purpose, and also for synchronization of motor actions for amplified effects. Here we report a designed single-stranded DNA molecular motor powered by alternated ultraviolet and visible light for processive track-walking, with the two light colours each locking the motor in a full directional step to allow saturated driving but no overstepping. This novel nano-optomechanical driving mechanism pushes the top-down control of molecular motors down to every single step, thus providing a key technical capability to advance the molecular motor-based precision technology and also motor synchronization for amplified effects.

2.
Analyst ; 139(18): 4681-90, 2014 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-25054471

RESUMEN

Biofunctionalized quantum dots (QDs), especially protein-coated QDs, are known to be useful targeted fluorescent labels for cellular and deep-tissue imaging. These nanoparticles can also serve as efficient energy donors in fluorescence resonance energy transfer (FRET) binding assays for the multiplexed sensing of tumor markers. However, current preparation processes for protein-functionalized QDs are laborious and require multiple synthesis steps (e.g. preparing them in high temperature, making them dispersible in water, and functionalizing them with surface ligands) to obtain a high quality and quantity of QD formulations, significantly impeding the progress of employing QDs for clinical diagnostics use such as a QD-based immunohistofluorescence assay. Herein, we demonstrate a one-step synthesis approach for preparing protein-functionalized QDs using a microfluidic (MF) chip setup. Using bovine serum albumin (BSA) molecules as the surface ligand model, we first studied and optimized the MF reaction synthesis parameters (e.g. reaction temperature, and channel width and length) for making protein-functionalized QDs using COMSOL simulation modeling, followed by experimental verification. Moreover, in comparison with the BSA-functionalized QDs synthesized using the conventional bench-top method, BSA-QDs prepared using the MF approach exhibit a significantly higher protein-functionalization efficiency, photostability and colloidal stability. The proposed one-step MF synthesis approach provides a rapid, cost effective, and a small-scale production of nanocrystals platform for developing new QD formulations in applications ranging from cell labeling to biomolecular sensing. Most importantly, this approach will considerably reduce the amount of chemical waste generated during the trial-and-error stage of developing and perfecting the desired physical and optical properties of new QD materials.


Asunto(s)
Técnicas Analíticas Microfluídicas/instrumentación , Nanotecnología/instrumentación , Puntos Cuánticos/química , Albúmina Sérica Bovina/química , Animales , Bovinos , Línea Celular , Diseño de Equipo , Ratones , Imagen Óptica
3.
Nanoscale Horiz ; 8(6): 827-841, 2023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37038716

RESUMEN

Integrating rationally designed DNA molecular walkers and DNA origami platforms is a promising route towards advanced nano-robotics of diverse functions. Unleashing the full potential in this direction requires DNA walker-origami systems beyond the present simplistic bridge-burning designs for automated repeatable operation and scalable nano-robotic functions. Here we report such a DNA walker-origami system integrating an advanced light-powered DNA bipedal walker and a ∼170 nm-long rod-like DNA origami platform. This light-powered walker is fully qualified as a genuine translational molecular motor, and relies entirely on pure mechanical effects that are complicated by the origami surface but must be preserved for the walker's proper operation. This is made possible by tailor-designing the origami for optimal match with the walker to best preserve its core mechanics. A new fluorescence method is combined with site-controlled motility experiments to yield distinct and reliable signals for the walker's self-directed and processive motion despite origami-complicated fluorophore emission. The resultant integrated DNA walker-origami system provides a 'seed' system for future development of advanced light-powered DNA nano-robots (e.g., for scalable walker-automated chemical synthesis), and also truly bio-mimicking nano-muscles powered by genuine artificial translational molecular motors.


Asunto(s)
Nanotecnología , Robótica , ADN/química , Movimiento (Física) , Colorantes Fluorescentes
4.
Sci Adv ; 9(38): eadi8444, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37738343

RESUMEN

Nanorobots powered by designed DNA molecular motors on DNA origami platforms are vigorously pursued but still short of fully autonomous and sustainable operation, as the reported systems rely on manually operated or autonomous but bridge-burning molecular motors. Expanding DNA nanorobotics requires origami-based autonomous non-bridge-burning motors, but such advanced artificial molecular motors are rare, and their integration with DNA origami remains a challenge. Here, we report an autonomous non-bridge-burning DNA motor tailor-designed for a triangle DNA origami substrate. This is a translational bipedal molecular motor but demonstrates effective translocation on both straight and curved segments of a self-closed circular track on the origami, including sharp ~90° turns by a single hand-over-hand step. The motor is highly directional and attains a record-high speed among the autonomous artificial molecular motors reported to date. The resultant DNA motor-origami system, with its complex translational-rotational motion and big nanorobotic capacity, potentially offers a self-contained "seed" nanorobotic platform to automate or scale up many applications.


Asunto(s)
ADN , Semillas , Movimiento (Física)
5.
J Stroke ; 24(1): 128-137, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35135066

RESUMEN

BACKGROUND AND PURPOSE: Mechanical thrombectomy (MT) is an effective treatment for patients with basilar artery occlusion (BAO) acute ischemic stroke. It remains unclear whether bridging intravenous thrombolysis (IVT) prior to MT confers any benefit. This study compared the outcomes of acute BAO patients who were treated with direct MT versus combined IVT plus MT. METHODS: This multicenter retrospective cohort study included patients who were treated for acute BAO from eight comprehensive stroke centers between January 2015 and December 2019. Patients received direct MT or combined bridging IVT plus MT. Primary outcome was favorable functional outcome defined as modified Rankin Scale 0-3 measured at 90 days. Secondary outcome measures included mortality and symptomatic intracranial hemorrhage (sICH). RESULTS: Among 322 patients, 127 (39.4%) patients underwent bridging IVT followed by MT and 195 (60.6%) underwent direct MT. The mean±standard deviation age was 67.5±14.1 years, 64.0% were male and median National Institutes of Health Stroke Scale was 16 (interquartile range, 8 to 25). At 90-day, the rate of favorable functional outcome was similar between the bridging IVT and direct MT groups (39.4% vs. 34.4%, P=0.361). On multivariable analyses, bridging IVT was not as Comorbidisociated with favorable functional outcome, mortality or sICH. In subgroup analyses, patients with underlying atherosclerosis treated with bridging IVT compared to direct MT had a higher rate of favorable functional outcome at 90 days (37.2% vs. 15.5%, P=0.013). CONCLUSIONS: Functional outcomes were similar in BAO patients treated with bridging IVT versus direct MT. In the subgroup of patients with underlying large-artery atherosclerosis stroke mechanism, bridging IVT may potentially confer benefit and this warrants further investigation.

7.
Nanotheranostics ; 2(4): 371-386, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30324083

RESUMEN

Transition metal dichalcogenides (TMDCs) are categorized as novel two-dimensional (2D) nanomaterials with unique physical and chemical properties, bearing varied applications in medical and materials sciences. However, only a few works report the application of TMDCs for gene therapy in cancer treatment. Here, we engineer a multi-gene delivery system based on functionalized monolayer MoS2, which can co-deliver HDAC1 and KRAS small interfering RNAs (siRNAs) to Panc-1 cancer cells for combinational cancer therapy. The synergistic effect of gene silencing therapy and NIR phototherapy is demonstrated by inhibition of both genes, in vitro cell growth rate, and in vivo tumor volume growth rate, exemplifying pre-eminent anticancer efficacy. This anti-tumor effect is a result of the photothermal effect of MoS2 induced by NIR excitation and inactivation of HDAC1 and KRAS genes, which consequently bring about apoptosis, inhibit migration, and induce cell cycle arrest in the treated Panc-1 cells. Moreover, good biocompatibility and reduced cytotoxicity of MoS2-based nanocarriers enable their metabolism within in vitro and in vivo mouse models over a prolonged duration without any evident ill-effects. In summary, we demonstrate the promising potential of low-toxicity, functionalized MoS2 nanocarriers as a biocompatible gene delivery system for in vivo pancreatic adenocarcinoma therapy.

9.
J Mater Chem B ; 3(10): 2163-2172, 2015 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32262384

RESUMEN

RNA interference (RNAi) targeting the K-ras oncogene mutation in pancreatic cancer mediated by small interfering RNA (siRNA) transfection is a very promising treatment. However, the rapid degradation and negative charge of naked siRNAs restrict their direct delivery into cells. In this contribution, we propose a safe and effective transmembrane transport nanocarrier formulation based on a newly developed biodegradable charged polyester-based vector (BCPV) for K-ras siRNA delivery into pancreatic cancer cells. Our results have shown that these biodegradable and biocompatible vectors are able to transfect siRNAs targeting mutant K-ras into MiaPaCa-2 cells with high transfection and knockdown efficiency. More importantly, the RNAi process initiated a cascade gene regulation of the downstream proteins of K-ras associated with cell proliferation, migration, invasion and apoptosis. We observed that after the mutant K-ras siRNA transfection, the growth, migration and invasion of the MiaPaCa-2 cells were significantly reduced; also, the apoptosis of the pancreatic cancer cells was promoted. Although in vivo testing data are limited, we propose that the BCPV based nanoparticle formulation could be a promising candidate as non-viral vectors for gene therapy in clinical settings.

10.
Biomater Sci ; 2(9): 1244-1253, 2014 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32481895

RESUMEN

The discovery of RNA interference (RNAi) has created a new platform for cancer therapy applications. This approach utilizes small interfering RNA (siRNA) molecules to regulate the expression of a specific target gene and subsequently suppresses the growth of the cancer cells. However, the formulation of free siRNAs alone is incapable of transfecting cells as they are negatively charged and degrade in biological fluids. For successful siRNA transfection, a biocompatible and functional carrier is needed. In this contribution, we demonstrated the preparation of functionalized single walled carbon nanotubes (SWNTs) as efficient siRNA carriers and utilized the SWNTs/siRNA nanoplex for the in vitro gene therapy of pancreatic cancer. Through fluorescent imaging and quantitative flow cytometric analysis, we observed a high siRNA transfection efficiency mediated by the nanoplex formulation. We demonstrated the successful internalization of the nanoplex by the pancreatic cancer cell and the subsequent release of the siRNAs from the nanoplex, which resulted in a down-regulation of the target gene. In addition, the functionalized SWNTs proved to be highly biocompatible as assessed by cell viability tests. Our results suggest that in the near future the SWNTs may be able to serve as a multifunctional nanoplatform for the in vivo targeted gene therapy of pancreatic cancer.

11.
Biomater Sci ; 2(7): 1007-1015, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-32481974

RESUMEN

Pancreatic cancer is one of the deadliest cancers throughout the world with rarely efficient therapies currently available. Gene therapy on pancreatic cancer through small interfering RNA (siRNA)-based RNA interference (RNAi) has shown great potential and attracted much attention. However, due to the fragile nature of nucleic acid, the application of RNAi as a safe and efficient carrier faces great challenges. In this contribution, a self-assembly regime, which is based on well-defined cationic polylactides (CPLAs) with tertiary amine groups, has been used to encapsulate and protect siRNAs from fast degradation. CPLA is a safe and degradable formulation that allowed us to deliver siRNAs targeting the proangiogenic chemokine interleukin-8 (IL-8) to pancreatic cancer cells for gene therapy. Stable IL-8 siRNA-CPLA nanoplexes were successfully formed by electrostatic force and high gene transfection efficiencies were shown on two pancreatic cancer cell lines. We did not observe any cytotoxicity from these CPLAs over a large concentration range via cell viability evaluations. More importantly, the silencing of IL-8 gene expression significantly attenuated the proliferation of pancreatic cancer cells. Our preliminary results support the future development of gene therapy that might provide an effective and safe treatment approach towards pancreatic cancer.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda