RESUMEN
Particulate matter is a component of ambient air pollution that has been linked to millions of annual premature deaths globally1-3. Assessments of the chronic and acute effects of particulate matter on human health tend to be based on mass concentration, with particle size and composition also thought to play a part4. Oxidative potential has been suggested to be one of the many possible drivers of the acute health effects of particulate matter, but the link remains uncertain5-8. Studies investigating the particulate-matter components that manifest an oxidative activity have yielded conflicting results7. In consequence, there is still much to be learned about the sources of particulate matter that may control the oxidative potential concentration7. Here we use field observations and air-quality modelling to quantify the major primary and secondary sources of particulate matter and of oxidative potential in Europe. We find that secondary inorganic components, crustal material and secondary biogenic organic aerosols control the mass concentration of particulate matter. By contrast, oxidative potential concentration is associated mostly with anthropogenic sources, in particular with fine-mode secondary organic aerosols largely from residential biomass burning and coarse-mode metals from vehicular non-exhaust emissions. Our results suggest that mitigation strategies aimed at reducing the mass concentrations of particulate matter alone may not reduce the oxidative potential concentration. If the oxidative potential can be linked to major health impacts, it may be more effective to control specific sources of particulate matter rather than overall particulate mass.
Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Contaminación del Aire/análisis , Material Particulado/análisis , Material Particulado/química , Bronquios/citología , Células Cultivadas , Ciudades , Células Epiteliales , Europa (Continente) , Humanos , Modelos Teóricos , Oxidación-Reducción , Población Rural , Población UrbanaRESUMEN
Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries. Space-use hotspots of commercially valuable sharks and of internationally protected species had the highest overlap with longlines (up to 76% and 64%, respectively), and were also associated with significant increases in fishing effort. We conclude that pelagic sharks have limited spatial refuge from current levels of fishing effort in marine areas beyond national jurisdictions (the high seas). Our results demonstrate an urgent need for conservation and management measures at high-seas hotspots of shark space use, and highlight the potential of simultaneous satellite surveillance of megafauna and fishers as a tool for near-real-time, dynamic management.
Asunto(s)
Migración Animal , Explotaciones Pesqueras/estadística & datos numéricos , Mapeo Geográfico , Océanos y Mares , Tiburones/fisiología , Análisis Espacio-Temporal , Animales , Densidad de Población , Medición de Riesgo , Tiburones/clasificación , Navíos , Factores de TiempoRESUMEN
The cell bodies of hypothalamic magnocellular neurones are densely packed in the hypothalamic supraoptic nucleus, whereas their axons project to the anatomically discrete posterior pituitary gland. We have taken advantage of this unique anatomical structure to establish proteome and phosphoproteome dynamics in neuronal cell bodies and axonal terminals in response to physiological stimulation. We have found that proteome and phosphoproteome responses to neuronal stimulation are very different between somatic and axonal neuronal compartments, indicating the need of each cell domain to differentially adapt. In particular, changes in the phosphoproteome in the cell body are involved in the reorganization of the cytoskeleton and in axonal terminals the regulation of synaptic and secretory processes. We have identified that prohormone precursors including vasopressin and oxytocin are phosphorylated in axonal terminals and are hyperphosphorylated following stimulation. By multiomic integration of transcriptome and proteomic data, we identify changes to proteins present in afferent inputs to this nucleus.
Asunto(s)
Proteoma , Proteómica , Proteoma/metabolismo , Hipotálamo/metabolismo , Neuronas/metabolismo , Núcleo Supraóptico/metabolismoRESUMEN
Closely spaced promoters are ubiquitous in prokaryotic and eukaryotic genomes. How their structure and dynamics relate remains unclear, particularly for tandem formations. To study their transcriptional interference, we engineered two pairs and one trio of synthetic promoters in nonoverlapping, tandem formation, in single-copy plasmids transformed into Escherichia coli cells. From in vivo measurements, we found that these promoters in tandem formation can have attenuated transcription rates. The attenuation strength can be widely fine-tuned by the promoters' positioning, natural regulatory mechanisms, and other factors, including the antibiotic rifampicin, which is known to hamper RNAP promoter escape. From this, and supported by in silico models, we concluded that the attenuation in these constructs emerges from premature terminations generated by collisions between RNAPs elongating from upstream promoters and RNAPs occupying downstream promoters. Moreover, we found that these collisions can cause one or both RNAPs to falloff. Finally, the broad spectrum of possible, externally regulated, attenuation strengths observed in our synthetic tandem promoters suggests that they could become useful as externally controllable regulators of future synthetic circuits.
Asunto(s)
Escherichia coli , Regiones Promotoras Genéticas , Transcripción Genética , Escherichia coli/genética , Escherichia coli/metabolismo , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Plásmidos/genética , Regulación Bacteriana de la Expresión GénicaRESUMEN
While flowering plants have diversified in virtually every terrestrial clime, climate constrains the distribution of individual lineages. Overcoming climatic constraints may be associated with diverse evolutionary phenomena including whole genome duplication (WGD), gene-tree conflict, and life-history changes. Climatic shifts may also have facilitated increases in flowering plant diversification rates. We investigate climatic shifts in the flowering plant order Ericales, which consists of c. 14 000 species with diverse climatic tolerances. We estimate phylogenetic trees from transcriptomic data, 64 chloroplast loci, and Angiosperms353 nuclear loci that, respectively, incorporate 147, 4508, and 2870 Ericales species. We use these phylogenetic trees to analyse how climatic shifts are associated with WGD, gene-tree conflict, life-history, and diversification rates. Early branches in the phylogenetic trees are extremely short, and have high levels of gene-tree conflict and at least one WGD. On lineages descended from these early branches, there is a significant association between climatic shifts (primarily out of tropical climates), further WGDs, and life-history. Extremely short early branches, and their associated gene-tree conflict and WGDs, appear to underpin the explosive origin of numerous species rich Ericales clades. The evolution of diverse climatic tolerances in these species rich clades is tightly associated with WGD and life-history.
RESUMEN
Vaccinieae is a morphologically diverse and species-rich (â¼1430 species) tribe in Ericaceae. Although the majority of diversity is tropical, Vaccinieae are best known for temperate crops (i.e., blueberries, cranberries, and lingonberries) in Vaccinium. Vaccinium itself (â¼500 species) has been previously suggested as highly polyphyletic and taxonomic boundaries among many of the other genera in the tribe remain uncertain. We assessed the evolutionary history of Vaccinieae with phylogenomic analyses based on a target-enrichment dataset containing 256 low-copy nuclear loci and 210 species representing 30 of the 35 genera in the tribe and 25 of the 29 sections of Vaccinium. We conducted time-calibrated biogeographic analyses and diversification analyses to explore the area of origin and global dispersal history of the tribe. The analysis recovered a temperate North American origin for Vaccinieae approximately 30 million years ago. Tropical diversity of Vaccinieae was inferred to result from multiple, independent movements into the tropics from north-temperate ancestors. Diversification rate increases corresponded to radiation into the Andes and SE Asia. The pseudo-10-locular ovary evolved once in the tribe from the five-locular state, coinciding with the diversification of a major clade that includes most Asian Vaccinium and the group from which commercial blueberries are derived (V. sect. Cyanococcus). A reconstruction from available chromosome counts suggests that a major polyploid event predated the evolution of nearly half the diversity of Vaccinieae. The extent of polyphyly in Vaccinium documented here supports the need for a generic reclassification of the tribe.
RESUMEN
Comprehensive identification of aerosol sources and their constituent organic compounds requires aerosol-phase molecular-level characterization with a high time resolution. While real-time chemical characterization of aerosols is becoming increasingly common, information about functionalization and structure is typically obtained from offline methods. This study presents a method for determining the presence of carboxylic acid functional groups in real time using extractive electrospray ionization mass spectrometry based on measurements of [M - H + 2Na]+ adducts. The method is validated and characterized using standard compounds. A proof-of-concept application to α-pinene secondary organic aerosol (SOA) shows the ability to identify carboxylic acids even in complex mixtures. The real-time capability of the method allows for the observation of the production of carboxylic acids, likely formed in the particle phase on short time scales (<120 min). Our research explains previous findings of carboxylic acids being a significant component of SOA and a quick decrease in peroxide functionalization following SOA formation. We show that the formation of these acids is commensurate with the increase of dimers in the particle phase. Our results imply that SOA is in constant evolution through condensed-phase processes, which lower the volatility of the aerosol components and increase the available condensed mass for SOA growth and, therefore, aerosol mass loading in the atmosphere. Further work could aim to quantify the effect of particle-phase acid formation on the aerosol volatility distributions.
Asunto(s)
Aerosoles , Ácidos Carboxílicos , Espectrometría de Masa por Ionización de ElectrosprayRESUMEN
The dual-specificity protein kinase MKK3 has been implicated in tumor cell proliferation and survival, yet its precise role in cancer remains inconclusive. A critical step in elucidating the kinase's involvement in disease biology is the identification of potent, cell-permeable kinase inhibitors. Presently, MKK3 lacks a dedicated tool compound for these purposes, along with validated methods for the facile screening, identification, and optimization of inhibitors. In this study, we have developed a TR-FRET-based enzymatic assay for the detection of MKK3 activity in vitro and a BRET-based assay to assess ligand binding to this enzyme within intact human cells. These assays were instrumental in identifying hit compounds against MKK3 that share a common chemical scaffold, sourced from a library of bioactive kinase inhibitors. Initial hits were subsequently expanded through the synthesis of novel analogs. The resulting structure-activity relationship (SAR) was rationalized using molecular dynamics simulations against a homology model of MKK3. We expect our findings to expedite the development of novel, potent, selective, and bioactive inhibitors, thus facilitating investigations into MKK3's role in various cancers.
Asunto(s)
Neoplasias , Pirimidinas , Humanos , MAP Quinasa Quinasa 3 , Pirimidinas/química , Relación Estructura-Actividad , Fosforilación , Proliferación Celular , Inhibidores de Proteínas Quinasas/químicaRESUMEN
White matter dissection (WMD) involves isolating bundles of myelinated axons in the brain and serves to gain insights into brain function and neural mechanisms underlying neurological disorders. While effective, cadaveric brain dissections pose certain challenges mainly due to availability of resources. Technological advancements, such as photogrammetry, have the potential to overcome these limitations by creating detailed three-dimensional (3D) models for immersive learning experiences in neuroanatomy. This study aimed to provide a detailed step-by-step WMD captured using two-dimensional (2D) images and 3D models (via photogrammetry) to serve as a comprehensive guide for studying white matter tracts of the brain. One formalin-fixed brain specimen was utilized to perform the WMD. The brain was divided in a sagittal plane and both cerebral hemispheres were stored in a freezer at -20 °C for 10 days, then thawed under running water at room temperature. Micro-instruments under an operating microscope were used to perform a systematic lateral-to-medial and medial-to-lateral dissection, while 2D images were captured and 3D models were created through photogrammetry during each stage of the dissection. Dissection was performed with comprehensive examination of the location, main landmarks, connections, and functions of the white matter tracts of the brain. Furthermore, high-quality 3D models of the dissections were created and housed on SketchFab®, allowing for accessible and free of charge viewing for educational and research purposes. Our comprehensive dissection and 3D models have the potential to increase understanding of the intricate white matter anatomy and could provide an accessible platform for the teaching of neuroanatomy.
Asunto(s)
Disección , Imagenología Tridimensional , Neuroanatomía , Fotogrametría , Sustancia Blanca , Humanos , Sustancia Blanca/anatomía & histología , Sustancia Blanca/diagnóstico por imagen , Imagenología Tridimensional/métodos , Neuroanatomía/educación , Neuroanatomía/métodos , Disección/métodos , Fotogrametría/métodos , Modelos Anatómicos , Encéfalo/anatomía & histología , Encéfalo/diagnóstico por imagenRESUMEN
COVID-19, a complex multisystem disorder affecting the central nervous system, can also have psychiatric sequelae. In addition, clinical evidence indicates that a diagnosis of a schizophrenia spectrum disorder is a risk factor for mortality in patients with COVID-19. In this study, we aimed to explore brain-specific molecular aspects of COVID-19 by using a proteomic approach. We analyzed the brain proteome of fatal COVID-19 cases and compared it with differentially regulated proteins found in postmortem schizophrenia brains. The COVID-19 proteomic dataset revealed a strong enrichment of proteins expressed by glial and neuronal cells and processes related to diseases with a psychiatric and neurodegenerative component. Specifically, the COVID-19 brain proteome enriches processes that are hallmark features of schizophrenia. Furthermore, we identified shared and distinct molecular pathways affected in both conditions. We found that brain ageing processes are likely present in both COVID-19 and schizophrenia, albeit possibly driven by distinct processes. In addition, alterations in brain cell metabolism were observed, with schizophrenia primarily impacting amino acid metabolism and COVID-19 predominantly affecting carbohydrate metabolism. The enrichment of metabolic pathways associated with astrocytic components in both conditions suggests the involvement of this cell type in the pathogenesis. Both COVID-19 and schizophrenia influenced neurotransmitter systems, but with distinct impacts. Future studies exploring the underlying mechanisms linking brain ageing and metabolic dysregulation may provide valuable insights into the complex pathophysiology of these conditions and the increased vulnerability of schizophrenia patients to severe outcomes.
RESUMEN
Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.
Asunto(s)
Putrescina , Espermidina , Humanos , Niño , Putrescina/metabolismo , Putrescina/farmacología , Espermidina/metabolismo , Espermidina/farmacología , Poliaminas/metabolismo , Poliaminas/farmacología , Espermina/metabolismo , Espermina/farmacología , Eflornitina/farmacologíaRESUMEN
Atlantic salmon (Salmo salar) broodstock recruits are normally fed a specialized diet with a higher content of essential nutrients for a limited time period prior to fasting and transfer to freshwater. Typically, this period lasts for about six months, but may vary among producers. Reduced use of marine ingredients in commercial salmon diets during the last decades has affected the content of essential nutrients, such as n-3 long chained polyunsaturated fatty acids (LC-PUFA), minerals and vitamins. Furthermore, to minimize the risk of losses and implement new breeding achievements faster, breeding companies have shortened the production cycle of broodstock from 4 to 3 years, which may affect the number of fish that are large enough to mature. In the present study, we have extended the broodstock feeding period from 6 to 15 months prior to the freshwater transfer giving a higher content of n-3 LC-PUFA (higher inclusion of marine oils) from February to December (Phase 1), and thereafter a diet with a higher energy content to ensure growth towards the spring and maturation (Phase 2). Four sea cages with approximately 80.000 salmon postsmolt, two sea cages with males and two with females, were given a control diet and an experimental diet. Samples were taken in Phase 1 at start (1.7 kg), mid (3.4 kg) and end Phase 1/start of Phase 2 (8.3 kg), and end of Phase 2 (13.4 kg). The fish were thereafter fasted, and selected fish transferred to landbased freshwater tanks where light and temperature were used to manipulate the spawning time of the fish in two groups (early or late). Due to disease in the facility, measures of egg quality and hatching were only obtained from the early group. During the trial and spawning period, biometrical measurements were recorded, and samples of liver, gonad, fillet and red blood cells (RBC) were collected for fatty acid composition and blood plasma for analysis of lipid and health-related parameters. Samples were also collected for gonadal transcriptomic analysis by microarray and qPCR (end Phase 2) and plasma steroids (end Phase 2, mid maturation and spawning). Males fed the test diet had a larger body size compared to the control group at the end of Phase 2, while no differences were observed between dietary groups for the females. Total mortality in the trial was lower in the test group compared to the control, losses were caused mainly by sea lice treatments, loser fish or cardiomyopathy syndrome (CMS). The dietary LC-PUFA levels in the test diet were reflected in the tissues particularly during Phase 1, but only different in the fillet samples and eggs at the end of Phase 2 and at spawning. Plasma sex steroids content increased at mid maturation and showed lower levels of androgens and estrogens in females fed the test diet compared to the control. At the end of Phase 2, transcriptional analysis showed upregulation of steroidogenic enzymes, although not reflected in changes in plasma steroids in Phase 2, indicating changes to come during maturation. The differences in LC-PUFA content in tissues and plasma steroids did not appear to affect fecundity, sperm quality, egg survival or hatching rate, but the test group had larger eggs compared to the control in the early spawner-group. Prolonged feeding of n-3 LC-PUFA to pre-puberty Atlantic salmon broodstock appears to be important for higher survival in challenging sea cage environments and has an effect on sex steroid production that, together with high energy diet during early maturation, cause the test group to produce larger eggs.
Asunto(s)
Ácidos Grasos Omega-3 , Salmo salar , Animales , Femenino , Masculino , Maduración Sexual , Semen , Ácidos Grasos , Dieta/veterinaria , Esteroides , Alimentación Animal/análisisRESUMEN
INTRODUCTION: A major lower-limb amputation (LLA) for dysvascular disease carries the risk of disturbed wound healing necessitating reamputation at a higher level. A reamputation causes a delay in prosthetic fitting and recovery of walking ability. The combination of a prolonged open wound and inability to walk can worsen of the physical and psychological situation. Prevention of reamputation seems therefore important. This study aims to identify risk factors for reamputation, and to evaluate a possible altered mortality rate after a dysvascular major LLA. These issues are crucial for shared decision-making prior to surgery. METHODS: Retrospective study investigating a Dutch regional cohort of patients with a dysvascular below-knee, through-knee, or above-knee LLA. RESULTS: 516 Dysvascular major LLAs were included (2014-2018). One hundred reamputations were performed within 1 year after initial amputation (19.4%). Risk factors for ipsilateral reamputation were diabetes mellitus, lipid-lowering drugs usage, and lower level of amputation (respectively P = < 0.01, 0.037, and < 0.01). The 30-day mortality rates were 1% and 12% for the reamputation group and the non-reamputation group respectively (P = < 0.01). The 1-year mortality rates were 23% and 27% for the reamputation group and the non-reamputation group respectively (P = 0.423). CONCLUSIONS: Ipsilateral reamputation within one year after initial amputation is common. Several risk factors for reamputation were identified. The 30-day and 1-year mortality rate is high, but not significantly different after one year. A clinical decision tool for dysvascular patients needs to be developed to improve shared decision-making, reduce reamputation rates, and improve survival.
RESUMEN
PURPOSE: To report the refractive outcomes of long (≥25.00 mm) and short (≤22.00 mm) axial length (AL) eyes undergoing immediately sequential bilateral cataract surgery (ISBCS). METHODS: In this retrospective cohort study, patients who underwent ISBCS were identified and eyes of patients with bilateral long and short ALs were included. Pre- and postoperative biometry, autorefraction, and ocular comorbidities or complications were recorded. The primary outcome was the mean refractive prediction error. RESULTS: Thirty-seven patients (74 eyes) with long ALs and 18 patients (36 eyes) with short ALs were included. The means ± standard deviations of the ALs were 26.40 ± 1.38 mm and 21.44 ± 0.46 mm in the long and short AL groups, respectively. In long AL eyes, the mean absolute error from the biometry-predicted refraction was - 0.16 ± 0.46 D, corresponding to 74% of eyes achieving a refraction within ±0.50 D of the predicted value. In short AL eyes, the mean absolute error was - 0.63 ± 0.73 D, corresponding to 44% of eyes achieving a refraction within ±0.50 D of the predicted value. Eight (44.4%) patients with short AL eyes had a myopic deviation greater than ±0.50 D from the predicted result in both eyes. CONCLUSIONS: Compared to patients with long AL eyes, ISBCS in patients with short ALs had a wider variance in refractive outcome and a lower rate of achieving a postoperative refraction within ±0.50 D of the predicted target.
Asunto(s)
Extracción de Catarata , Catarata , Lentes Intraoculares , Errores de Refracción , Humanos , Agudeza Visual , Implantación de Lentes Intraoculares/efectos adversos , Estudios Retrospectivos , Lentes Intraoculares/efectos adversos , Refracción Ocular , Errores de Refracción/etiología , Biometría , Longitud Axial del Ojo , Catarata/complicaciones , Extracción de Catarata/efectos adversosRESUMEN
This study aimed to develop microemulsions (MEs) containing α-bisabolol for the topical treatment of cutaneous leishmaniasis (CL). Initially, pseudoternary phase diagrams were developed using α-bisabolol as the oil phase, Eumulgin® CO 40 as the surfactant, Polymol® HE as the co-surfactant, and distilled water as the aqueous phase. Two transparent liquid systems (TLS) containing 5% of α-bisabolol were selected and characterized (F5E25 and F5EP25). Next, skin permeation and retention assays were performed using Franz cells. The interaction of the formulation with the stratum corneum (SC) was evaluated using the FTIR technique. The cytotoxicity was evaluated in murine peritoneal macrophages. Finally, the antileishmanial activity of microemulsions was determined in promastigotes and amastigotes of L. amazonensis (strain MHOM/BR/77/LTB 0016). As a result, the selected formulations showed isotropy, nanometric size (below 25 nm), Newtonian behavior and pH ranging from 6.5 to 6.9. The MEs achieved a 2.5-fold increase in the flux and skin-permeated amount of α-bisabolol. ATR-FTIR results showed that microemulsions promoted fluidization and extraction of lipids and proteins of the stratum corneum, increasing the diffusion coefficient and partition coefficient of the drug in the skin. Additionally, F5E25 and F5EP25 showed higher activity against promastigotes (IC50 13.27 and 18.29, respectively) compared to unencapsulated α-bisabolol (IC50 53.8). Furthermore, F5E25 and F5EP25 also showed antileishmanial activity against intracellular amastigotes of L. amazonensis, with IC50 50 times lower than free α-bisabolol and high selectivity index (up to 15). Therefore, the systems obtained are favorable to topical administration, with significant antileishmanial activity against L. amazonensis promastigotes and amastigotes, being a promising system for future in vivo trials.
Asunto(s)
Emulsiones , Macrófagos Peritoneales , Sesquiterpenos Monocíclicos , Sesquiterpenos , Piel , Animales , Sesquiterpenos Monocíclicos/farmacología , Sesquiterpenos Monocíclicos/química , Emulsiones/química , Ratones , Sesquiterpenos/farmacología , Sesquiterpenos/química , Piel/parasitología , Macrófagos Peritoneales/efectos de los fármacos , Macrófagos Peritoneales/parasitología , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Espectroscopía Infrarroja por Transformada de Fourier , Absorción Cutánea/efectos de los fármacos , Ratones Endogámicos BALB C , Femenino , Leishmania/efectos de los fármacos , Tensoactivos/farmacología , Tensoactivos/química , Antiprotozoarios/farmacología , Antiprotozoarios/químicaRESUMEN
Cold shock adaptability is a key survival skill of gut bacteria of warm-blooded animals. Escherichia coli cold shock responses are controlled by a complex multi-gene, timely-ordered transcriptional program. We investigated its underlying mechanisms. Having identified short-term, cold shock repressed genes, we show that their responsiveness is unrelated to their transcription factors or global regulators, while their single-cell protein numbers' variability increases after cold shock. We hypothesized that some cold shock repressed genes could be triggered by high propensity for transcription locking due to changes in DNA supercoiling (likely due to DNA relaxation caused by an overall reduction in negative supercoiling). Concomitantly, we found that nearly half of cold shock repressed genes are also highly responsive to gyrase inhibition (albeit most genes responsive to gyrase inhibition are not cold shock responsive). Further, their response strengths to cold shock and gyrase inhibition correlate. Meanwhile, under cold shock, nucleoid density increases, and gyrases and nucleoid become more colocalized. Moreover, the cellular energy decreases, which may hinder positive supercoils resolution. Overall, we conclude that sensitivity to diminished negative supercoiling is a core feature of E. coli's short-term, cold shock transcriptional program, and could be used to regulate the temperature sensitivity of synthetic circuits.
Asunto(s)
ADN Superhelicoidal , Escherichia coli , Respuesta al Choque por Frío/genética , ADN/metabolismo , Girasa de ADN/genética , Girasa de ADN/metabolismo , ADN Superhelicoidal/genética , ADN Superhelicoidal/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismoRESUMEN
Accurately determining the mutagenicity of small-molecule N-nitrosamine drug impurities and nitrosamine drug substance-related impurities (NDSRIs) is critical to identifying mutagenic and cancer hazards. In the current study we have evaluated several approaches for enhancing assay sensitivity for evaluating the mutagenicity of N-nitrosamines in the bacterial reverse mutagenicity (Ames) test. Preincubation assays were conducted using five activation conditions: no exogenous metabolic activation and metabolic activation mixes employing both 10% and 30% liver S9 from hamsters and rats pretreated with inducers of enzymatic activity. In addition, preincubations were conducted for both 60 min and 30 min. These test variables were evaluated by testing 12 small-molecule N-nitrosamines and 17 NDSRIs for mutagenicity in Salmonella typhimurium tester strains TA98, TA100, TA1535, and TA1537, and Escherichia coli strain WP2 uvrA (pKM101). Eighteen of the 29 N-nitrosamine test substances tested positive under one or more of the testing conditions and all 18 positives could be detected by using tester strains TA1535 and WP2 uvrA (pKM101), preincubations of 30 min, and S9 mixes containing 30% hamster liver S9. In general, the conditions under which NDSRIs were mutagenic were similar to those found for small-molecule N-nitrosamines.
Asunto(s)
Pruebas de Mutagenicidad , Mutágenos , Nitrosaminas , Salmonella typhimurium , Pruebas de Mutagenicidad/métodos , Animales , Nitrosaminas/toxicidad , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Ratas , Mutágenos/toxicidad , Cricetinae , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Masculino , Contaminación de Medicamentos , Hígado/efectos de los fármacos , Hígado/metabolismo , Activación MetabólicaRESUMEN
It was compared smartphone-based measurements of static balance control and mobility of elderly population with and without type 2 diabetes mellitus (DM2). The present cross-sectional study investigated 73 participants grouped in a control group (n = 36) and a DM2 group (n = 37). Smartphone's built in inertial sensors were used to record inertial changes of the participants during static balance and mobility (Timed Up and Go test - TUG) tasks. The inertial variations as a function of the time were analyzed and compared between groups. Both groups were matched in age, body mass index, male-female proportion, but DM2 group had significant larger fasting glucose than control group. Additionally, DM2 group had worst static balance control with open and closed eyes than the controls (p < 0.05) as well as they also had longer duration to execute the different events of the mobility test than the controls (p < 0.05). DM2 patients had decline of motor functions compared to controls and the use of bult-in sensors of smartphones was feasible to identify these functional impairments. The easy access of smartphones could be improving the screening of functional impairments in DM2 patients.
Asunto(s)
Diabetes Mellitus Tipo 2 , Equilibrio Postural , Teléfono Inteligente , Humanos , Diabetes Mellitus Tipo 2/fisiopatología , Masculino , Femenino , Estudios Transversales , Equilibrio Postural/fisiología , Anciano , Persona de Mediana Edad , Estudios de Casos y ControlesRESUMEN
The equatorial region of the Earth's atmosphere serves as both a significant locus for phenomena, including the Madden-Julian Oscillation (MJO), and a source of formidable complexity. This complexity arises from the intricate interplay between nonlinearity and thermodynamic processes, particularly those involving moisture. In this study, we employ a normal mode decomposition of atmospheric reanalysis ERA-5 datasets to investigate the influence of nonlinearity and moisture on amplitude growth, propagation speed, and mode coupling associated with equatorially trapped waves. We focus our analysis on global-scale baroclinic Kelvin and Rossby waves, recognized as crucial components contributing to the variability of the MJO. We examine the dependence of wave amplitudes on the background moisture field in the equatorial region, as measured by total column water vapor. Our analysis demonstrates the crucial role of moisture in exciting these waves. We further investigate the dependence of the propagation speed of the waves on their amplitudes and the background moisture field. Our analysis reveals a robust correlation between the phase speed of the normal modes and their corresponding amplitude, whereas a weaker correlation is found between the eigenmodes' phase speed and the moisture field. Hence, our findings suggest that moisture plays a role in exciting the global-scale Rossby-Kelvin structure of the MJO. In this context, the propagation speed of the eigenmodes is mainly influenced by their amplitudes, underscoring the significant role of nonlinearity in wave propagation.
RESUMEN
ABSTRACT: We report a case of corneal epithelial hyperplasia associated with chronic eye rubbing mimicking keratoconus. A 32-year-old man was presented with a 3-year history of suboptimal vision and astigmatism in his left eye. His history was significant for chronic left eye rubbing. The anterior corneal curvature map showed inferior steepening in the left eye; however, other features of ectasia were absent. Corneal epithelium thickness mapping with optical coherence tomography was significant for corresponding epithelial thickening. His corneal imaging remained stable at a 6-month follow-up examination. At month 15-and after cessation of eye rubbing behavior-the vision symptoms, refraction, and corneal imaging had normalized. In conclusion, chronic eye rubbing may cause reversible corneal epithelial hypertrophy. Eye rubbing should be considered in the evaluation of patients presenting with unexplained vision symptoms and changes in astigmatism that are not consistent with ectasia on corneal imaging.