Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nature ; 609(7925): 144-150, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35850148

RESUMEN

Retrons are prokaryotic genetic retroelements encoding a reverse transcriptase that produces multi-copy single-stranded DNA1 (msDNA). Despite decades of research on the biosynthesis of msDNA2, the function and physiological roles of retrons have remained unknown. Here we show that Retron-Sen2 of Salmonella enterica serovar Typhimurium encodes an accessory toxin protein, STM14_4640, which we renamed as RcaT. RcaT is neutralized by the reverse transcriptase-msDNA antitoxin complex, and becomes active upon perturbation of msDNA biosynthesis. The reverse transcriptase is required for binding to RcaT, and the msDNA is required for the antitoxin activity. The highly prevalent RcaT-containing retron family constitutes a new type of tripartite DNA-containing toxin-antitoxin system. To understand the physiological roles of such toxin-antitoxin systems, we developed toxin activation-inhibition conjugation (TAC-TIC), a high-throughput reverse genetics approach that identifies the molecular triggers and blockers of toxin-antitoxin systems. By applying TAC-TIC to Retron-Sen2, we identified multiple trigger and blocker proteins of phage origin. We demonstrate that phage-related triggers directly modify the msDNA, thereby activating RcaT and inhibiting bacterial growth. By contrast, prophage proteins circumvent retrons by directly blocking RcaT. Consistently, retron toxin-antitoxin systems act as abortive infection anti-phage defence systems, in line with recent reports3,4. Thus, RcaT retrons are tripartite DNA-regulated toxin-antitoxin systems, which use the reverse transcriptase-msDNA complex both as an antitoxin and as a sensor of phage protein activities.


Asunto(s)
Antitoxinas , Bacteriófagos , Retroelementos , Salmonella typhimurium , Sistemas Toxina-Antitoxina , Antitoxinas/genética , Bacteriófagos/metabolismo , ADN Bacteriano/genética , ADN de Cadena Simple/genética , Conformación de Ácido Nucleico , Profagos/metabolismo , ADN Polimerasa Dirigida por ARN/metabolismo , Retroelementos/genética , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/virología , Sistemas Toxina-Antitoxina/genética
2.
PLoS Genet ; 20(5): e1011229, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38696518

RESUMEN

Staphylococcus aureus (S. aureus) is an opportunistic pathogen causing diseases ranging from mild skin infections to life threatening conditions, including endocarditis, pneumonia, and sepsis. To identify host genes modulating this host-pathogen interaction, we infected 25 Collaborative Cross (CC) mouse strains with methicillin-resistant S. aureus (MRSA) and monitored disease progression for seven days using a surgically implanted telemetry system. CC strains varied widely in their response to intravenous MRSA infection. We identified eight 'susceptible' CC strains with high bacterial load, tissue damage, and reduced survival. Among the surviving strains, six with minimal colonization were classified as 'resistant', while the remaining six tolerated higher organ colonization ('tolerant'). The kidney was the most heavily colonized organ, but liver, spleen and lung colonization were better correlated with reduced survival. Resistant strains had higher pre-infection circulating neutrophils and lower post-infection tissue damage compared to susceptible and tolerant strains. We identified four CC strains with sexual dimorphism: all females survived the study period while all males met our euthanasia criteria earlier. In these CC strains, males had more baseline circulating monocytes and red blood cells. We identified several CC strains that may be useful as new models for endocarditis, myocarditis, pneumonia, and resistance to MRSA infection. Quantitative Trait Locus (QTL) analysis identified two significant loci, on Chromosomes 18 and 3, involved in early susceptibility and late survival after infection. We prioritized Npc1 and Ifi44l genes as the strongest candidates influencing survival using variant analysis and mRNA expression data from kidneys within these intervals.


Asunto(s)
Ratones de Colaboración Cruzada , Staphylococcus aureus Resistente a Meticilina , Fenotipo , Infecciones Estafilocócicas , Animales , Staphylococcus aureus Resistente a Meticilina/genética , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Infecciones Estafilocócicas/genética , Infecciones Estafilocócicas/microbiología , Ratones , Femenino , Masculino , Ratones de Colaboración Cruzada/genética , Interacciones Huésped-Patógeno/genética , Sitios de Carácter Cuantitativo , Modelos Animales de Enfermedad
3.
PLoS Genet ; 18(4): e1010075, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35417454

RESUMEN

Salmonella infections typically cause self-limiting gastroenteritis, but in some individuals these bacteria can spread systemically and cause disseminated disease. Salmonella Typhimurium (STm), which causes severe systemic disease in most inbred mice, has been used as a model for disseminated disease. To screen for new infection phenotypes across a range of host genetics, we orally infected 32 Collaborative Cross (CC) mouse strains with STm and monitored their disease progression for seven days by telemetry. Our data revealed a broad range of phenotypes across CC strains in many parameters including survival, bacterial colonization, tissue damage, complete blood counts (CBC), and serum cytokines. Eighteen CC strains survived to day 7, while fourteen susceptible strains succumbed to infection before day 7. Several CC strains had sex differences in survival and colonization. Surviving strains had lower pre-infection baseline temperatures and were less active during their daily active period. Core body temperature disruptions were detected earlier after STm infection than activity disruptions, making temperature a better detector of illness. All CC strains had STm in spleen and liver, but susceptible strains were more highly colonized. Tissue damage was weakly negatively correlated to survival. We identified loci associated with survival on Chromosomes (Chr) 1, 2, 4, 7. Polymorphisms in Ncf2 and Slc11a1, known to reduce survival in mice after STm infections, are located in the Chr 1 interval, and the Chr 7 association overlaps with a previously identified QTL peak called Ses2. We identified two new genetic regions on Chr 2 and 4 associated with susceptibility to STm infection. Our data reveal the diversity of responses to STm infection across a range of host genetics and identified new candidate regions for survival of STm infection.


Asunto(s)
Salmonelosis Animal , Infecciones por Salmonella , Salmonella enterica , Animales , Susceptibilidad a Enfermedades , Femenino , Antecedentes Genéticos , Masculino , Ratones , Fenotipo , Infecciones por Salmonella/genética , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Serogrupo
4.
Phys Biol ; 20(4)2023 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-37075776

RESUMEN

This paper concerns the identification of gene co-expression modules in transcriptomics data, i.e. collections of genes which are highly co-expressed and potentially linked to a biological mechanism. Weighted gene co-expression network analysis (WGCNA) is a widely used method for module detection based on the computation of eigengenes, the weights of the first principal component for the module gene expression matrix. This eigengene has been used as a centroid in ak-means algorithm to improve module memberships. In this paper, we present four new module representatives: the eigengene subspace, flag mean, flag median and module expression vector. The eigengene subspace, flag mean and flag median are subspace module representatives which capture more variance of the gene expression within a module. The module expression vector is a weighted centroid of the module which leverages the structure of the module gene co-expression network. We use these module representatives in Linde-Buzo-Gray clustering algorithms to refine WGCNA module membership. We evaluate these methodologies on two transcriptomics data sets. We find that most of our module refinement techniques improve upon the WGCNA modules by two statistics: (1) module classification between phenotype and (2) module biological significance according to Gene Ontology terms.


Asunto(s)
Perfilación de la Expresión Génica , Redes Reguladoras de Genes , Algoritmos , Fenotipo
5.
Biochemistry ; 59(48): 4573-4580, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33231431

RESUMEN

Non-typhoidal Salmonella are capable of colonizing livestock and humans, where they can progressively cause disease. Previously, a library of targeted single-gene deletion mutants of Salmonella enterica serotype Typhimurium was inoculated to ligated ileal loops in calves to identify genes under selection. Of those genes identified, a cluster of genes is related to carbohydrate metabolism and transportation. It is proposed that an incoming carbohydrate is first phosphorylated by a phosphoenolpyruvate-dependent phosphotransferase system. The metabolite is further phosphorylated by the kinase STM3781 and then cleaved by the aldolase STM3780. STM3780 is functionally annotated as a class II fructose-bisphosphate aldolase. The aldolase was purified to homogeneity, and its aldol condensation activity with a range of aldehydes was determined. In the condensation reaction, STM3780 was shown to catalyze the abstraction of the pro-S hydrogen from C3 of dihydroxyacetone and subsequent formation of a carbon-carbon bond with S stereochemistry at C3 and R stereochemistry at C4. The best aldehyde substrate was identified as l-threouronate. Surprisingly, STM3780 was also shown to catalyze the condensation of two molecules of dihydroxyacetone phosphate to form the branched carbohydrate dendroketose bisphosphate.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Fructosa-Bifosfato Aldolasa/genética , Fructosa-Bifosfato Aldolasa/metabolismo , Genes Bacterianos , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Animales , Biocatálisis , Metabolismo de los Hidratos de Carbono , Carbohidratos/química , Bovinos , Enfermedades de los Bovinos/microbiología , Medición de Intercambio de Deuterio , Dihidroxiacetona Fosfato/metabolismo , Humanos , Familia de Multigenes , Resonancia Magnética Nuclear Biomolecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Salmonelosis Animal/microbiología , Serogrupo , Estereoisomerismo , Especificidad por Sustrato
6.
Biochemistry ; 58(9): 1236-1245, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30715856

RESUMEN

Non-typhoidal Salmonella can colonize the gastrointestinal system of cattle and can also cause significant food-borne disease in humans. The use of a library of single-gene deletions in Salmonella enterica serotype Typhimurium allowed identification of several proteins that are under selection in the intestine of cattle. STM2437 ( yfeJ) encodes one of these proteins, and it is currently annotated as a type I glutamine amidotransferase. STM2437 was purified to homogeneity, and its catalytic properties with a wide range of γ-glutamyl derivatives were determined. The catalytic efficiency toward the hydrolysis of l-glutamine was extremely weak with a kcat/ Km value of 20 M-1 s-1. γ-l-Glutamyl hydroxamate was identified as the best substrate for STM2437, with a kcat/ Km value of 9.6 × 104 M-1 s-1. A homology model of STM2437 was constructed on the basis of the known crystal structure of a protein of unknown function (Protein Data Bank entry 3L7N ), and γ-l-glutamyl hydroxamate was docked into the active site based on the binding of l-glutamine in the active site of carbamoyl phosphate synthetase. Acivicin was shown to inactivate the enzyme by reaction with the active site cysteine residue and the subsequent loss of HCl. Mutation of Cys91 to serine completely abolished catalytic activity. Inactivation of STM2437 did not affect the ability of this strain to colonize mice, but it inhibited the growth of S. enterica Typhimurium in bacteriologic media containing γ-l-glutamyl hydroxamate.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Transferasas de Grupos Nitrogenados/química , Transferasas de Grupos Nitrogenados/metabolismo , Salmonelosis Animal/microbiología , Animales , Proteínas Bacterianas/genética , Bovinos , Enfermedades de los Bovinos/microbiología , Colitis/microbiología , Colitis/veterinaria , Activación Enzimática , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Glutamatos/metabolismo , Glutamatos/farmacología , Ácidos Hidroxámicos/metabolismo , Ácidos Hidroxámicos/farmacología , Hidroxilamina/farmacología , Isoxazoles/farmacología , Ratones Endogámicos C57BL , Mutagénesis Sitio-Dirigida , Transferasas de Grupos Nitrogenados/genética , Conformación Proteica , Salmonella typhimurium/efectos de los fármacos , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo , Especificidad por Sustrato
7.
Infect Immun ; 87(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30396895

RESUMEN

Salmonella enterica serovar Enteritidis is a common cause of foodborne illness in the United States. The bacterium can be transmitted to humans via contaminated chicken meat and eggs, and virulence in humans requires type III secretion system 1 (TTSS-1), encoded on Salmonella pathogenicity island 1 (SPI-1). Chickens often carry S Enteritidis subclinically, obscuring the role of SPI-1 in facilitating bacterial colonization. To evaluate the role of SPI-1 in the infection of chicks by Salmonella, we created and utilized strains harboring a stable fluorescent reporter fusion designed to quantify SPI-1 expression within the intestinal tracts of animals. Using mutants unable to express TTSS-1, we demonstrated the important role of the secretion system in facilitating bacterial colonization. We further showed that coinoculation of an SPI-1 mutant with the wild-type strain increased the number of mutant organisms in intestinal tissue and contents, suggesting that the wild type rescues the mutant. Our results support the hypothesis that SPI-1 facilitates S Enteritidis colonization of the chicken and make SPI-1 an attractive target in preventing Salmonella carriage and colonization in chickens to reduce contamination of poultry meat and eggs by this foodborne pathogen.


Asunto(s)
Proteínas Bacterianas , Portador Sano/veterinaria , Perfilación de la Expresión Génica , Intestinos/microbiología , Salmonelosis Animal/microbiología , Salmonella enteritidis/crecimiento & desarrollo , Salmonella enteritidis/genética , Animales , Fusión Artificial Génica , Portador Sano/microbiología , Pollos , Femenino , Genes Reporteros , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/análisis , Proteínas Recombinantes de Fusión/genética
8.
PLoS Pathog ; 13(1): e1006129, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28056091

RESUMEN

Intestinal inflammation caused by Salmonella enterica serovar Typhimurium increases the availability of electron acceptors that fuel a respiratory growth of the pathogen in the intestinal lumen. Here we show that one of the carbon sources driving this respiratory expansion in the mouse model is 1,2-propanediol, a microbial fermentation product. 1,2-propanediol utilization required intestinal inflammation induced by virulence factors of the pathogen. S. Typhimurium used both aerobic and anaerobic respiration to consume 1,2-propanediol and expand in the murine large intestine. 1,2-propanediol-utilization did not confer a benefit in germ-free mice, but the pdu genes conferred a fitness advantage upon S. Typhimurium in mice mono-associated with Bacteroides fragilis or Bacteroides thetaiotaomicron. Collectively, our data suggest that intestinal inflammation enables S. Typhimurium to sidestep nutritional competition by respiring a microbiota-derived fermentation product.


Asunto(s)
Colitis/microbiología , Interacciones Huésped-Patógeno/fisiología , Propilenglicol/metabolismo , Salmonelosis Animal/metabolismo , Salmonella typhimurium/patogenicidad , Animales , Respiración de la Célula/fisiología , Modelos Animales de Enfermedad , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa , Salmonella typhimurium/crecimiento & desarrollo , Factores de Virulencia/metabolismo
9.
PLoS Genet ; 11(9): e1005472, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26367458

RESUMEN

Multicopy single-stranded DNAs (msDNAs) are hybrid RNA-DNA molecules encoded on retroelements called retrons and produced by the action of retron reverse transcriptases. Retrons are widespread in bacteria but the natural function of msDNA has remained elusive despite 30 years of study. The major roadblock to elucidation of the function of these unique molecules has been the lack of any identifiable phenotypes for mutants unable to make msDNA. We report that msDNA of the zoonotic pathogen Salmonella Typhimurium is necessary for colonization of the intestine. Similarly, we observed a defect in intestinal persistence in an enteropathogenic E. coli mutant lacking its retron reverse transcriptase. Under anaerobic conditions in the absence of msDNA, proteins of central anaerobic metabolism needed for Salmonella colonization of the intestine are dysregulated. We show that the msDNA-deficient mutant can utilize nitrate, but not other alternate electron acceptors in anaerobic conditions. Consistent with the availability of nitrate in the inflamed gut, a neutrophilic inflammatory response partially rescued the ability of a mutant lacking msDNA to colonize the intestine. These findings together indicate that the mechanistic basis of msDNA function during Salmonella colonization of the intestine is proper production of proteins needed for anaerobic metabolism. We further conclude that a natural function of msDNA is to regulate protein abundance, the first attributable function for any msDNA. Our data provide novel insight into the function of this mysterious molecule that likely represents a new class of regulatory molecules.


Asunto(s)
ADN de Cadena Simple/genética , Intestinos/microbiología , Anaerobiosis , Animales , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Ratones , Salmonella typhimurium/genética , Salmonella typhimurium/crecimiento & desarrollo
10.
Infect Immun ; 85(2)2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27849183

RESUMEN

Salmonellae are pathogenic bacteria that cause significant morbidity and mortality in humans worldwide. Salmonellae establish infection and avoid clearance by the immune system by mechanisms that are not well understood. We previously showed that l-asparaginase II produced by Salmonella enterica serovar Typhimurium (S Typhimurium) inhibits T cell responses and mediates virulence. In addition, we previously showed that asparagine deprivation such as that mediated by l-asparaginase II of S Typhimurium causes suppression of activation-induced T cell metabolic reprogramming. Here, we report that STM3997, which encodes a homolog of disulfide bond protein A (dsbA) of Escherichia coli, is required for l-asparaginase II stability and function. Furthermore, we report that l-asparaginase II localizes primarily to the periplasm and acts together with l-asparaginase I to provide S Typhimurium the ability to catabolize asparagine and assimilate nitrogen. Importantly, we determined that, in a murine model of infection, S Typhimurium lacking both l-asparaginase I and II genes competes poorly with wild-type S Typhimurium for colonization of target tissues. Collectively, these results indicate that asparagine catabolism contributes to S Typhimurium virulence, providing new insights into the competition for nutrients at the host-pathogen interface.


Asunto(s)
Asparagina/metabolismo , Infecciones por Salmonella/microbiología , Salmonella/metabolismo , Salmonella/patogenicidad , Animales , Asparaginasa/metabolismo , Catálisis , Cisteína/metabolismo , Modelos Animales de Enfermedad , Estabilidad de Enzimas , Femenino , Activación de Linfocitos/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Mutación , Nitrógeno/metabolismo , Salmonella/genética , Salmonella/inmunología , Salmonelosis Animal/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/inmunología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/patogenicidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Virulencia , Factores de Virulencia/genética
11.
Infect Immun ; 84(12): 3517-3526, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27698022

RESUMEN

Intestinal epithelial cells provide an important colonization niche for Salmonella enterica serovar Typhimurium during gastrointestinal infections. In infected epithelial cells, a subpopulation of S Typhimurium bacteria damage their internalization vacuole, leading to escape from the Salmonella-containing vacuole (SCV) and extensive proliferation in the cytosol. Little is known about the bacterial determinants of nascent SCV lysis and subsequent survival and replication of Salmonella in the cytosol. To pinpoint S Typhimurium virulence factors responsible for these steps in the intracellular infectious cycle, we screened a S Typhimurium multigene deletion library in Caco-2 C2Bbe1 and HeLa epithelial cells for mutants that had an altered proportion of cytosolic bacteria compared to the wild type. We used a gentamicin protection assay in combination with a chloroquine resistance assay to quantify total and cytosolic bacteria, respectively, for each strain. Mutants of three S Typhimurium genes, STM1461 (ydgT), STM2829 (recA), and STM3952 (corA), had reduced cytosolic proliferation compared to wild-type bacteria, and one gene, STM2120 (asmA), displayed increased cytosolic replication. None of the mutants were affected for lysis of the nascent SCV or vacuolar replication in epithelial cells, indicating that these genes are specifically required for survival and proliferation of S Typhimurium in the epithelial cell cytosol. These are the first genes identified to contribute to this step of the S Typhimurium infectious cycle.


Asunto(s)
Proliferación Celular/genética , Citosol/microbiología , Células Epiteliales/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/patogenicidad , Animales , Línea Celular , Humanos , Ratones , Mutación
12.
Infect Immun ; 84(4): 1226-1238, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26857572

RESUMEN

Contaminated chicken/egg products are major sources of human salmonellosis, yet the strategies used by Salmonella to colonize chickens are poorly understood. We applied a novel two-step hierarchical procedure to identify new genes important for colonization and persistence of Salmonella enterica serotype Typhimurium in chickens. A library of 182 S. Typhimurium mutants each containing a targeted deletion of a group of contiguous genes (for a total of 2,069 genes deleted) was used to identify regions under selection at 1, 3, and 9 days postinfection in chicks. Mutants in 11 regions were under selection at all assayed times (colonization mutants), and mutants in 15 regions were under selection only at day 9 (persistence mutants). We assembled a pool of 92 mutants, each deleted for a single gene, representing nearly all genes in nine regions under selection. Twelve single gene deletion mutants were under selection in this assay, and we confirmed 6 of 9 of these candidate mutants via competitive infections and complementation analysis in chicks. STM0580, STM1295, STM1297, STM3612, STM3615, and STM3734 are needed for Salmonella to colonize and persist in chicks and were not previously associated with this ability. One of these key genes, STM1297 (selD), is required for anaerobic growth and supports the ability to utilize formate under these conditions, suggesting that metabolism of formate is important during infection. We report a hierarchical screening strategy to interrogate large portions of the genome during infection of animals using pools of mutants of low complexity. Using this strategy, we identified six genes not previously known to be needed during infection in chicks, and one of these (STM1297) suggests an important role for formate metabolism during infection.


Asunto(s)
Pollos , Salmonella typhimurium/genética , Selección Genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Evolución Molecular , Eliminación de Gen , Regulación Bacteriana de la Expresión Génica/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos , Enfermedades de las Aves de Corral/microbiología , Salmonelosis Animal/microbiología
13.
Mol Microbiol ; 89(3): 403-19, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23734719

RESUMEN

Salmonella Typhimurium gene STM2215 (rtn) is conserved among many enterobacteriaceae. Mutants lacking STM2215 poorly colonized the liver and spleen in intraperitoneal infection of mice and poorly colonized the intestine and deeper tissues in oral infection. These phenotypes were complemented by a wild-type copy of STM2215 provided in trans. STM2215 deletion mutants grew normally in J774A.1 murine macrophages but were unable to invade Caco-2 colonic epithelial cells. Consistent with this finding, mutants in STM2215 produced lower levels of effectors of the TTSS-1. STM2215 is a predicted c-di-GMP phosphodiesterase, but lacks identifiable sensor domains. Biochemical analysis of STM2215 determined that it is located in the inner membrane and has c-di-GMP phosphodiesterase activity in vitro dependent on an intact EAL motif. Unlike some previously identified members of this family, STM2215 did not affect motility, was expressed on plates, and in liquid media at late exponential and early stationary phase during growth. Defined mutations in STM2215 revealed that neither the predicted periplasmic domain nor the anchoring of the protein to the inner membrane is necessary for the activity of this protein during infection. However, the EAL domain of STM2215 is required during infection, suggesting that its phosphodiesterase activity is necessary during infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismo , Infecciones por Salmonella/microbiología , Salmonella typhimurium/enzimología , Secuencia de Aminoácidos , Animales , Proteínas Bacterianas/genética , Células CACO-2 , Femenino , Eliminación de Gen , Humanos , Macrófagos/microbiología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Hidrolasas Diéster Fosfóricas/genética , Estructura Terciaria de Proteína , Salmonella typhimurium/genética
14.
Vet Res ; 45: 2, 2014 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-24405577

RESUMEN

The type VI secretion system (T6SS) is a virulence factor for many Gram-negative bacteria. Salmonella genus harbors five phylogenetically distinct T6SS loci encoded in Salmonella Pathogenicity Islands (SPIs) SPI-6, SPI-19, SPI-20, SPI-21 and SPI-22, which are differentially distributed among serotypes. The T6SSs encoded in SPI-6 and SPI-19 contribute to pathogenesis of serotypes Typhimurium and Gallinarum in mice and chickens, respectively. Salmonella Dublin is a pathogen restricted to cattle where it causes a systemic disease. Also, it can colonize other hosts such as chickens and mice, which can act as reservoirs of this serotype. Salmonella Dublin harbors the genes for both T6SS(SPI-6) and T6SS(SPI-19). This study has determined the contribution of T6SS(SPI-6) and T6SS(SPI-19) to host-colonization by Salmonella Dublin using avian and murine models of infection. Competitive index experiments showed that, a mutant strain lacking both T6SSs (∆T6SS(SPI-6)/∆T6SS(SPI-19)) presents a strong colonization defect in cecum of chickens, similar to the defect observed for the ∆T6SS(SPI-6) mutant, suggesting that this serotype requires a functional T6SS(SPI-6) for efficient colonization of the avian gastrointestinal tract. Colonization of mice was also defective, although to a lesser extent than in chickens. In contrast, the T6SS(SPI-19) was not necessary for colonization of either chickens or mice. Transfer of T6SS(SPI-6), but not T6SS(SPI-19), restored the ability of the double mutant to colonize both animal hosts. Our data indicate that Salmonella Dublin requires only the T6SS(SPI-6) for efficient colonization of mice and chickens, and that the T6SS(SPI-6) and T6SS(SPI-19) are not functionally redundant.


Asunto(s)
Sistemas de Secreción Bacterianos , Sistema Digestivo/microbiología , Salmonella enterica/fisiología , Salmonella enterica/patogenicidad , Factores de Virulencia/genética , Animales , Pollos , Islas Genómicas , Ratones , Mutación , Salmonella enterica/genética , Bazo/microbiología , Factores de Virulencia/metabolismo
15.
Life Sci Alliance ; 7(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39043420

RESUMEN

Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low-folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.


Asunto(s)
Ácido Fólico , Longevidad , Animales , Ácido Fólico/administración & dosificación , Ácido Fólico/metabolismo , Ratones , Masculino , Femenino , Envejecimiento/metabolismo , Dieta/métodos , Ratones Endogámicos C57BL , Metotrexato/farmacología , Deficiencia de Ácido Fólico/metabolismo , Caenorhabditis elegans , Saccharomyces cerevisiae/metabolismo
16.
bioRxiv ; 2024 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-38260683

RESUMEN

Folate is a vitamin required for cell growth and is present in fortified foods in the form of folic acid to prevent congenital abnormalities. The impact of low folate status on life-long health is poorly understood. We found that limiting folate levels with the folate antagonist methotrexate increased the lifespan of yeast and worms. We then restricted folate intake in aged mice and measured various health metrics, metabolites, and gene expression signatures. Limiting folate intake decreased anabolic biosynthetic processes in mice and enhanced metabolic plasticity. Despite reduced serum folate levels in mice with limited folic acid intake, these animals maintained their weight and adiposity late in life, and we did not observe adverse health outcomes. These results argue that the effectiveness of folate dietary interventions may vary depending on an individual's age and sex. A higher folate intake is advantageous during the early stages of life to support cell divisions needed for proper development. However, a lower folate intake later in life may result in healthier aging.

17.
Infect Immun ; 81(11): 4063-70, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23959718

RESUMEN

Most bacterial pathogens require iron to grow and colonize host tissues. The Gram-negative bacterium Salmonella enterica serovar Typhimurium causes a natural systemic infection of mice that models acute and chronic human typhoid fever. S. Typhimurium resides in tissues within cells of the monocyte lineage, which limit pathogen access to iron, a mechanism of nutritional immunity. The primary ferric iron import system encoded by Salmonella is the siderophore ABC transporter FepBDGC. The Fep system has a known role in acute infection, but it is unclear whether ferric iron uptake or the ferric iron binding siderophores enterobactin and salmochelin are required for persistent infection. We defined the role of the Fep iron transporter and siderophores in the replication of Salmonella in macrophages and in mice that develop acute followed by persistent infections. Replication of wild-type and iron transporter mutant Salmonella strains was quantified in cultured macrophages, fecal pellets, and host tissues in mixed- and single-infection experiments. We show that deletion of fepB attenuated Salmonella replication and colonization within macrophages and mice. Additionally, the genes required to produce and transport enterobactin and salmochelin across the outer membrane receptors, fepA and iroN, are needed for colonization of all tissues examined. However, salmochelin appears to be more important than enterobactin in the colonization of the spleen and liver, both sites of dissemination. Thus, the FepBDGC ferric iron transporter and the siderophores enterobactin and salmochelin are required by Salmonella to evade nutritional immunity in macrophages and cause persistent infection in mice.


Asunto(s)
Enterobactina/metabolismo , Macrófagos/microbiología , Proteínas de Transporte de Membrana/metabolismo , Salmonelosis Animal/microbiología , Salmonella typhimurium/patogenicidad , Factores de Virulencia/metabolismo , Animales , Línea Celular , Modelos Animales de Enfermedad , Femenino , Eliminación de Gen , Hígado/microbiología , Masculino , Proteínas de Transporte de Membrana/genética , Ratones , Salmonella typhimurium/genética , Bazo/microbiología , Virulencia , Factores de Virulencia/genética
18.
Infect Immun ; 81(11): 4311-20, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24019407

RESUMEN

Cattle are naturally infected with Salmonella enterica serotype Typhimurium and exhibit pathological features of enteric salmonellosis that closely resemble those in humans. Cattle are the most relevant model of gastrointestinal disease resulting from nontyphoidal Salmonella infection in an animal with an intact microbiota. We utilized this model to screen a library of targeted single-gene deletion mutants to identify novel genes of Salmonella Typhimurium required for survival during enteric infection. Fifty-four candidate mutants were strongly selected, including numerous mutations in genes known to be important for gastrointestinal survival of salmonellae. Three genes with previously unproven phenotypes in gastrointestinal infection were tested in bovine ligated ileal loops. Two of these mutants, STM3602 and STM3846, recapitulated the phenotype observed in the mutant pool. Complementation experiments successfully reversed the observed phenotypes, directly linking these genes to the colonization defects of the corresponding mutant strains. STM3602 encodes a putative transcriptional regulator that may be involved in phosphonate utilization, and STM3846 encodes a retron reverse transcriptase that produces a unique RNA-DNA hybrid molecule called multicopy single-stranded DNA. The genes identified in this study represent an exciting new class of virulence determinants for further mechanistic study to elucidate the strategies employed by Salmonella to survive within the small intestines of cattle.


Asunto(s)
Enfermedades de los Bovinos/microbiología , Gastroenteritis/microbiología , Salmonelosis Animal/microbiología , Salmonella typhimurium/patogenicidad , Factores de Virulencia/metabolismo , Animales , Bovinos , Modelos Animales de Enfermedad , Gastroenteritis/veterinaria , Eliminación de Gen , Prueba de Complementación Genética , Pruebas Genéticas , Salmonella typhimurium/genética , Factores de Virulencia/genética
19.
Microbiome ; 11(1): 149, 2023 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-37420306

RESUMEN

BACKGROUND: The human gut microbiota is a complex community comprised of trillions of bacteria and is critical for the digestion and absorption of nutrients. Bacterial communities of the intestinal microbiota influence the development of several conditions and diseases. We studied the effect of host genetics on gut microbial composition using Collaborative Cross (CC) mice. CC mice are a panel of mice that are genetically diverse across strains, but genetically identical within a given strain allowing repetition and deeper analysis than is possible with other collections of genetically diverse mice. RESULTS: 16S rRNA from the feces of 167 mice from 28 different CC strains was sequenced and analyzed using the Qiime2 pipeline. We observed a large variance in the bacterial composition across CC strains starting at the phylum level. Using bacterial composition data, we identified 17 significant Quantitative Trait Loci (QTL) linked to 14 genera on 9 different mouse chromosomes. Genes within these intervals were analyzed for significant association with pathways and the previously known human GWAS database using Enrichr analysis and Genecards database. Multiple host genes involved in obesity, glucose homeostasis, immunity, neurological diseases, and many other protein-coding genes located in these regions may play roles in determining the composition of the gut microbiota. A subset of these CC mice was infected with Salmonella Typhimurium. Using infection outcome data, an increase in abundance of genus Lachnospiraceae and decrease in genus Parasutterella correlated with positive health outcomes after infection. Machine learning classifiers accurately predicted the CC strain and the infection outcome using pre-infection bacterial composition data from the feces. CONCLUSION: Our study supports the hypothesis that multiple host genes influence the gut microbiome composition and homeostasis, and that certain organisms may influence health outcomes after S. Typhimurium infection. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Ratones , Humanos , Animales , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Bacterias/genética , Heces/microbiología , Sitios de Carácter Cuantitativo/genética
20.
mBio ; 14(1): e0244422, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36475774

RESUMEN

Chicks are ideal to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Taxonomic/metagenomic analyses captured the development of the chick microbiota in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm) during development. Taxonomic analysis suggests that colonization by the chicken microbiota takes place in several waves. The cecal microbiota stabilizes at day 12 posthatch with prominent Gammaproteobacteria and Clostridiales. Introduction of S. Typhimurium at day 4 posthatch disrupted the expected waves of intestinal colonization. Taxonomic and metagenomic shotgun sequencing analyses allowed us to identify species present in uninfected chicks. Untargeted metabolomics suggested different metabolic activities in infected chick microbiota. This analysis and gas chromatography-mass spectrometry on ingesta confirmed that lactic acid in cecal content coincides with the stable presence of enterococci in STm-infected chicks. Unique metabolites, including 2-isopropylmalic acid, an intermediate in the biosynthesis of leucine, were present only in the cecal content of STm-infected chicks. The metagenomic data suggested that the microbiota in STm-infected chicks contained a higher abundance of genes, from STm itself, involved in branched-chain amino acid synthesis. We generated an ilvC deletion mutant (STM3909) encoding ketol-acid-reductoisomerase, a gene required for the production of l-isoleucine and l-valine. ΔilvC mutants are disadvantaged for growth during competitive infection with the wild type. Providing the ilvC gene in trans restored the growth of the ΔilvC mutant. Our integrative approach identified biochemical pathways used by STm to establish a colonization niche in the chick intestine during development. IMPORTANCE Chicks are an ideal model to follow the development of the intestinal microbiota and to understand how a pathogen perturbs this developing population. Using taxonomic and metagenomic analyses, we captured the development of chick microbiota to 19 days posthatch in unperturbed chicks and in chicks infected with Salmonella enterica serotype Typhimurium (STm). We show that normal development of the microbiota takes place in waves and is altered in the presence of a pathogen. Metagenomics and metabolomics suggested that branched-chain amino acid biosynthesis is especially important for Salmonella growth in the infected chick intestine. Salmonella mutants unable to make l-isoleucine and l-valine colonize the chick intestine poorly. Restoration of the pathway for biosynthesis of these amino acids restored the colonizing ability of Salmonella. Integration of multiple analyses allowed us to correctly identify biochemical pathways used by Salmonella to establish a niche for colonization in the chick intestine during development.


Asunto(s)
Microbiota , Enfermedades de las Aves de Corral , Salmonelosis Animal , Animales , Pollos/microbiología , Isoleucina , Salmonella typhimurium/metabolismo , Ciego/microbiología , Aminoácidos de Cadena Ramificada/metabolismo , Valina/metabolismo , Salmonelosis Animal/microbiología , Enfermedades de las Aves de Corral/microbiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda