Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Tumour Biol ; 30(3): 109-20, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19440007

RESUMEN

The basement membrane, immune cells, capillaries, fibroblasts and extracellular matrix (ECM) constitute the tumour stroma, commonly referred to as the 'reactive stroma'. The fibroblasts from the initial stages of a tumour, as the main constituents of the reactive stroma, present a different phenotype from the normal fibroblasts and play a crucial role in tumour progression. This review presents the differences between normal and tumour stromal fibroblasts and analyzes the molecular mechanisms (which involve growth factors, ECM components, matrix metalloproteinases, integrins and cell adhesion molecules) in the complex interactions between stromal fibroblasts and tumour cells. To date, several examples of heterotypic interactions between tumour stromal fibroblasts and tumour cells have supported the hypothesis that the tumour stroma promotes the growth of the tumour mass, as well as invasion and metastasis. However, it remains possible that the stroma acts essentially as a local modulator to impede tumorigenesis at an early stage and that the desmoplastic response is a host defence reaction designed to confine the developing tumour. The latter hypothesis has largely been neglected. The review aims to give a broader view on the role of stromal fibroblasts in tumour growth, invasion and metastasis.


Asunto(s)
Fibroblastos/patología , Neoplasias/patología , Células del Estroma/patología , Animales , Humanos , Invasividad Neoplásica/patología , Metástasis de la Neoplasia/patología
2.
Anticancer Res ; 35(4): 1881-916, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25862842

RESUMEN

AIM: to identify biological interactions between proliferating fibroblasts and HeLa cells in vitro. MATERIALS AND METHODS: Fibroblasts were isolated from both normal and tumour human tissues. Coverslip co-cultures of HeLa and fibroblasts in various ratios with medium replacement every 48 h were studied using fixed cell staining with dyes such as Giemsa and silver staining, with immunochemistry for Ki-67 and E-cadherin, with dihydrofolate reductase (DHFR) enzyme reaction, as well as live cell staining for non-specific esterases and lipids. Other techniques included carmine cell labeling, autoradiography and apoptosis assessment. RESULTS: Under conditions of feeding and cell: cell ratios allowing parallel growth of human fibroblasts and HeLa cells, co-cultured for up to 20 days, a series of phenomena occur consecutively: profound affinity between the two cell types and exchange of small molecules; encircling of the HeLa colonies by the fibroblasts and enhanced growth of both cell types at their contact areas; expression of carbonic anhydrase in both cell types and high expression of non-specific esterases and cytoplasmic argyrophilia in the surrounding fibroblasts; intense production and secretion of lipid droplets by the surrounding fibroblasts; development of a complex net of argyrophilic projections of the fibroblasts; E-cadherin expression in the HeLa cells; from the 10th day onwards, an increasing detachment of batches of HeLa cells at the peripheries of colonies and appearance of areas with many multi-nucleated and apoptotic HeLa cells, and small HeLa fragments; from the 17th day, appearance of fibroblasts blocked at the G2-M phase. Co-cultures at approximately 17-20 days display a cell-cell fight with foci of (a) sparse growth of both cell types, (b) overgrowth of the fibroblasts and (c) regrowth of HeLa in small colonies. These results indicate that during their interaction with HeLa cells in vitro, proliferating fibroblasts can be activated against HeLa. This type of activation is not observed if fibroblast proliferation is blocked by contact inhibition of growth at confluency, or by omitting replacement of the nutrient medium. CONCLUSION: The present observations show that: (a) interaction between proliferating fibroblasts and HeLa cells in vitro drastically influences each other's protein expression, growth pattern, chromatin features and survival; (b) these functions depend on the fibroblast/HeLa ratio, cell topology (cell-cell contact and the architectural pattern developed during co-culture) and frequent medium change, as prerequisites for fibroblast proliferation; (c) this co-culture model is useful in the study of the complex processes within the tumour microenvironment, as well as the in vitro reproduction and display of several phenomena conventionally seen in tumour cytological sections, such as desmoplasia, apoptosis, nuclear abnormalities; and (d) overgrown fibroblasts adhering to the boundaries of HeLa colonies produce and secrete lipid droplets.


Asunto(s)
Proliferación Celular/genética , Técnicas In Vitro , Microambiente Tumoral/genética , Comunicación Celular/genética , Supervivencia Celular/genética , Cromatina/genética , Técnicas de Cocultivo , Fibroblastos/metabolismo , Fibroblastos/patología , Células HeLa , Humanos , Células del Estroma/patología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda