Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Environ Manage ; 358: 120779, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38599083

RESUMEN

Biological invasions are increasingly recognised as a major global change that erodes ecosystems, societal well-being, and economies. However, comprehensive analyses of their economic ramifications are missing for most national economies, despite rapidly escalating costs globally. Türkiye is highly vulnerable to biological invasions owing to its extensive transport network and trade connections as well as its unique transcontinental position at the interface of Europe and Asia. This study presents the first analysis of the reported economic costs caused by biological invasions in Türkiye. The InvaCost database which compiles invasive non-native species' monetary costs was used, complemented with cost searches specific to Türkiye, to describe the spatial and taxonomic attributes of costly invasive non-native species, the types of costs, and their temporal trends. The total economic cost attributed to invasive non-native species in Türkiye (from 202 cost reporting documents) amounted to US$ 4.1 billion from 1960 to 2022. However, cost data were only available for 87 out of 872 (10%) non-native species known for Türkiye. Costs were biased towards a few hyper-costly non-native taxa, such as jellyfish, stink bugs, and locusts. Among impacted sectors, agriculture bore the highest total cost, reaching US$ 2.85 billion, followed by the fishery sector with a total cost of US$ 1.20 billion. Management (i.e., control and eradication) costs were, against expectations, substantially higher than reported damage costs (US$ 2.89 billion vs. US$ 28.4 million). Yearly costs incurred by non-native species rose exponentially over time, reaching US$ 504 million per year in 2020-2022 and are predicted to increase further in the next 10 years. A large deficit of cost records compared to other countries was also shown, suggesting a larger monetary underestimate than is typically observed. These findings underscore the need for improved cost recording as well as preventative management strategies to reduce future post-invasion management costs and help inform decisions to manage the economic burdens posed by invasive non-native species. These insights further emphasise the crucial role of standardised data in accurately estimating the costs associated with invasive non-native species for prioritisation and communication purposes.


Asunto(s)
Especies Introducidas , Ecosistema , Conservación de los Recursos Naturales/economía , Agricultura/economía , Animales , Explotaciones Pesqueras/economía
2.
Bioscience ; 73(8): 560-574, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37680688

RESUMEN

Biological invasions are a global challenge that has received insufficient attention. Recently available cost syntheses have provided policy- and decision makers with reliable and up-to-date information on the economic impacts of biological invasions, aiming to motivate effective management. The resultant InvaCost database is now publicly and freely accessible and enables rapid extraction of monetary cost information. This has facilitated knowledge sharing, developed a more integrated and multidisciplinary network of researchers, and forged multidisciplinary collaborations among diverse organizations and stakeholders. Over 50 scientific publications so far have used the database and have provided detailed assessments of invasion costs across geographic, taxonomic, and spatiotemporal scales. These studies have provided important information that can guide future policy and legislative decisions on the management of biological invasions while simultaneously attracting public and media attention. We provide an overview of the improved availability, reliability, standardization, and defragmentation of monetary costs; discuss how this has enhanced invasion science as a discipline; and outline directions for future development.

3.
Conserv Biol ; 37(2): e14034, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36349474

RESUMEN

Biological invasions represent a key threat to insular systems and have pronounced impacts across environments and economies. The ecological impacts have received substantial focus, but the socioeconomic impacts are poorly synthesized across spatial and temporal scales. We used the InvaCost database, the most comprehensive assessment of published economic costs of invasive species, to assess economic impacts on islands worldwide. We analyzed socioeconomic costs across differing expenditure types and examined temporal trends across islands that differ in their political geography-island nation states, overseas territories, and islands of continental countries. Over US$36 billion in total costs (including damages and management) has occurred on islands from 1965 to 2020 due to invasive species' impacts. Nation states incurred the greatest total and management costs, and islands of continental countries incurred costs of similar magnitude, both far higher than those in overseas territories. Damage-loss costs were significantly lower, but with qualitatively similar patterns across differing political geographies. The predominance of management spending differs from the pattern found for most countries examined and suggests important knowledge gaps in the extent of many damage-related socioeconomic impacts. Nation states spent the greatest proportion of their gross domestic products countering these costs, at least 1 order of magnitude higher than other locations. Most costs were borne by authorities and stakeholders, demonstrating the key role of governmental and nongovernmental bodies in addressing island invasions. Temporal trends revealed cost increases across all island types, potentially reflecting efforts to tackle invasive species at larger, more socially complex scales. Nevertheless, the already high total economic costs of island invasions substantiate the role of biosecurity in reducing and preventing invasive species arrivals to reduce strains on limited financial resources and avoid threats to sustainable development goals.


Costos económicos de proteger a las islas de las especies invasoras Resumen Las invasiones biológicas representan una amenaza importante para los sistemas insulares, además de tener impactos pronunciados en el ambiente y en la economía. Los impactos ecológicos han recibido atención sustancial, mientras que los impactos socioeconómicos se encuentran pobremente sintetizados en las escalas temporales y espaciales. Usamos la base de datos InvaCost, el análisis más completo de los costos económicos de las especies invasoras, para evaluar los impactos económicos sobre las islas a nivel mundial. Analizamos los costos socioeconómicos en varios tipos de gastos y examinamos las tendencias temporales en las islas que difieren en su geografía política - islas estado-nación, territorios ultramarinos e islas de países continentales. En las islas han ocurrido gastos de más de $36 mil millones de dólares entre 1965 y 2020 debido a los impactos de las especies invasoras. Las islas estado-nación produjeron los mayores costos de manejo y el mayor total, mientras que las islas de los países continentales produjeron costos de una magnitud similar, ambas con gastos mucho más elevados que los de los territorios ultramarinos. Los costos de las pérdidas por daños fueron significativamente más bajas, aunque con patrones cualitativamente similares entre las diferentes geografías políticas. El predominio del gasto en el manejo difiere del patrón hallado en la mayoría de los países analizados y sugiere que hay vacíos importantes en el conocimiento del alcance de muchos de los impactos socioeconómicos relacionados con los daños. Las islas estado-nación gastaron la mayor proporción de su producto interno bruto en contrarrestar estos costos, al menos una orden de magnitud mayor que las otras localidades. La mayoría de los costos fueron asumidos por las autoridades y los accionistas, lo que demuestra el papel clave que tienen los organismos gubernamentales y no gubernamentales en cómo se atienden las invasiones insulares. Las tendencias temporales revelaron incrementos en el costo en todos los tipos de islas, lo que potencialmente refleja los esfuerzos por combatir a las especies invasoras a escalas más grandes y socialmente más complejas. Aun así, el elevado costo económico total de las invasiones insulares fundamenta la función que tiene la bioseguridad en la reducción y prevención de la llegada de especies invasoras para reducir presiones sobre los recursos financieros limitados y evitar amenazas para las metas de desarrollo sustentable.


Asunto(s)
Conservación de los Recursos Naturales , Especies Introducidas , Geografía , Ecosistema
4.
J Environ Manage ; 324: 116374, 2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36352726

RESUMEN

A collective understanding of economic impacts and in particular of monetary costs of biological invasions is lacking for the Nordic region. This paper synthesizes findings from the literature on costs of invasions in the Nordic countries together with expert elicitation. The analysis of cost data has been made possible through the InvaCost database, a globally open repository of monetary costs that allows for the use of temporal, spatial, and taxonomic descriptors facilitating a better understanding of how costs are distributed. The total reported costs of invasive species across the Nordic countries were estimated at $8.35 billion (in 2017 US$ values) with damage costs significantly outweighing management costs. Norway incurred the highest costs ($3.23 billion), followed by Denmark ($2.20 billion), Sweden ($1.45 billion), Finland ($1.11 billion) and Iceland ($25.45 million). Costs from invasions in the Nordics appear to be largely underestimated. We conclude by highlighting such knowledge gaps, including gaps in policies and regulation stemming from expert judgment as well as avenues for an improved understanding of invasion costs and needs for future research.


Asunto(s)
Países Escandinavos y Nórdicos , Noruega , Islandia , Finlandia , Suecia
5.
J Anim Ecol ; 90(9): 2147-2160, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33205462

RESUMEN

The integration and synthesis of the data in different areas of science is drastically slowed and hindered by a lack of standards and networking programmes. Long-term studies of individually marked animals are not an exception. These studies are especially important as instrumental for understanding evolutionary and ecological processes in the wild. Furthermore, their number and global distribution provides a unique opportunity to assess the generality of patterns and to address broad-scale global issues (e.g. climate change). To solve data integration issues and enable a new scale of ecological and evolutionary research based on long-term studies of birds, we have created the SPI-Birds Network and Database (www.spibirds.org)-a large-scale initiative that connects data from, and researchers working on, studies of wild populations of individually recognizable (usually ringed) birds. Within year and a half since the establishment, SPI-Birds has recruited over 120 members, and currently hosts data on almost 1.5 million individual birds collected in 80 populations over 2,000 cumulative years, and counting. SPI-Birds acts as a data hub and a catalogue of studied populations. It prevents data loss, secures easy data finding, use and integration and thus facilitates collaboration and synthesis. We provide community-derived data and meta-data standards and improve data integrity guided by the principles of Findable, Accessible, Interoperable and Reusable (FAIR), and aligned with the existing metadata languages (e.g. ecological meta-data language). The encouraging community involvement stems from SPI-Bird's decentralized approach: research groups retain full control over data use and their way of data management, while SPI-Birds creates tailored pipelines to convert each unique data format into a standard format. We outline the lessons learned, so that other communities (e.g. those working on other taxa) can adapt our successful model. Creating community-specific hubs (such as ours, COMADRE for animal demography, etc.) will aid much-needed large-scale ecological data integration.


Asunto(s)
Aves , Metadatos , Animales , Bases de Datos Factuales
6.
Conserv Biol ; 35(1): 216-226, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32812277

RESUMEN

Invasive species have major impacts on biodiversity and are one of the primary causes of amphibian decline and extinction. Unlike other top ant invaders that negatively affect larger fauna via chemical defensive compounds, the Argentine ant (Linepithema humile) does not have a functional sting. Nonetheless, it deploys defensive compounds against competitors and adversaries. We estimated levels of ant aggression toward 3 native terrestrial amphibians by challenging juveniles in field ant trails and in lab ant foraging arenas. We measured the composition and quantities of toxin in L. humile by analyzing pygidial glands and whole-body contents. We examined the mechanisms of toxicity in juvenile amphibians by quantifying the toxin in amphibian tissues, searching for histological damages, and calculating toxic doses for each amphibian species. To determine the potential scope of the threat to amphibians, we used global databases to estimate the number, ranges, and conservation status of terrestrial amphibian species with ranges that overlap those of L. humile. Juvenile amphibians co-occurring spatially and temporally with L. humile die when they encounter L. humile on an ant trail. In the lab, when a juvenile amphibian came in contact with L. humile the ants reacted quickly to spray pygidial-gland venom onto the juveniles. Iridomyrmecin was the toxic compound in the spray. Following absorption, it accumulated in brain, kidney, and liver tissue. Toxic dose for amphibian was species dependent. Worldwide, an estimated 817 terrestrial amphibian species overlap in range with L. humile, and 6.2% of them are classified as threatened. Our findings highlight the high potential of L. humile venom to negatively affect amphibian juveniles and provide a basis for exploring the largely overlooked impacts this ant has in its wide invasive range.


Efectos del Veneno de la Hormiga Argentina sobre los Anfibios Terrestres Resumen Las especies invasoras tienen un impacto importante sobre la biodiversidad y son una de las causas principales del declive y extinción de los anfibios. A diferencia de otras hormigas super-invasoras que afectan negativamente a animales más grandes por medio de compuestos químicos de defensa, la hormiga argentina (Linepithema humile) no tiene unaguijón funcional. Sin embargo, esta hormiga despliega compuestos defensivos contra sus competidores y adversarios. Estimamos los niveles de agresión de las hormigas hacia tres anfibios terrestres nativos exponiendo a los anfibios juveniles en pistas de hormigas en el campo y en las arenas de forrajeo de las hormigas en el laboratorio. Medimos la composición y las cantidades de toxina que presenta L. humile por medio del análisis de las glándulas pigidiales y el contenido en el cuerpo completo. Examinamos los mecanismos de la toxicidad en los anfibios juveniles cuantificando la toxina en el tejido del anfibio, buscando daños histológicos y calculando las dosis tóxicas para cada especie de anfibio. Para determinar el alcance potencial de la amenaza para los anfibios usamos bases de datos mundiales para estimar el número, distribución y estado de conservación de las especies terrestres de anfibios con distribuciones que se solapan con la de L. humile. Los anfibios juveniles que co-ocurren temporal y espacialmente con L. humile mueren al encontrarse con esta especie de hormiga en sus pistas. En el laboratorio, cuando un anfibio juvenil entró en contacto con L. humile, las hormigas reaccionaron rápidamente rociando a estos juveniles con veneno proveniente de las glándulas pigidiales. La iridomyrmecina fue el compuesto tóxico que encontramos en las glándulas pigidiales. Después de ser absorbida por la piel del anfibio, se acumuló en el cerebro, los riñones y el hígado. La dosis tóxica para los anfibios depende de la especie. A nivel mundial, se estima que 817 especies de anfibios terrestres tienen una distribución que se solapa con la de L. humile, y el 6.2% de estas especies se encuentran clasificadas como amenazadas. Nuestros hallazgos resaltan el potencial alto del veneno de L. humile para tener efectos negativos sobre los anfibios juveniles y también proporcionan una base para la exploración de los impactos de esta hormiga en su amplio rango invasivo, los cuales generalmente son ignorados.


Asunto(s)
Venenos de Hormiga , Hormigas , Anfibios , Animales , Conducta Animal , Conservación de los Recursos Naturales
7.
J Anim Ecol ; 89(9): 2063-2076, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32445419

RESUMEN

In ants, social thermal regulation is the collective maintenance of a nest temperature that is optimal for individual colony members. In the thermophilic ant Aphaenogaster iberica, two key behaviours regulate nest temperature: seasonal nest relocation and variable nest depth. Outside the nest, foragers must adapt their activity to avoid temperatures that exceed their thermal limits. It has been suggested that social thermal regulation constrains physiological and morphological thermal adaptations at the individual level. We tested this hypothesis by examining the foraging rhythms of six populations of A. iberica, which were found at different elevations (from 100 to 2,000 m) in the Sierra Nevada mountain range of southern Spain. We tested the thermal resistance of individuals from these populations under controlled conditions. Janzen's climatic variability hypothesis (CVH) states that greater climatic variability should select for organisms with broader temperature tolerances. We found that the A. iberica population at 1,300 m experienced the most extreme temperatures and that ants from this population had the highest heat tolerance (LT50 = 57.55°C). These results support CVH's validity at microclimatic scales, such as the one represented by the elevational gradient in this study. Aphaenogaster iberica maintains colony food intake levels across different elevations and mean daily temperatures by shifting its rhythm of activity. This efficient colony-level thermal regulation and the significant differences in individual heat tolerance that we observed among the populations suggest that behaviourally controlled thermal regulation does not constrain individual physiological adaptations for coping with extreme temperatures.


En hormigas, la termorregulación social es el mantenimiento colectivo de la temperatura del nido óptima para los individuos de la colonia. En la hormiga termófila Aphaenogaster iberica, hay dos comportamientos clave que regulan la temperatura del nido: la reubicación estacional y la profundidad variable del nido. Fuera del nido, las obreras recolectoras deben adaptar su actividad para evitar las temperaturas que excedan sus límites térmicos. Se ha sugerido que la termorregulación social limita las adaptaciones térmicas a nivel individual, fisiológicas y morfológicas. Examinamos esta hipótesis, estudiando los ritmos de actividad de recolección de alimento en seis poblaciones de A. iberica, a distinta altitud, desde 100 m a 2,000 m, en las montañas de Sierra Nevada, en el sur de España. Y analizamos la resistencia térmica de los individuos de estas poblaciones, en condiciones controladas. La Hipótesis de la Variabilidad Climática de Janzen (CVH) postula que una mayor variabilidad climática selecciona organismos con tolerancias térmicas más amplias. Encontramos que la población de 1,300 m era la que presentaba la mayor variabilidad climática, y que las hormigas de esta población tiene la mayor resistencia térmica individual (LT50 = 57.55°C), lo que confirma la validez de la CVH a una escala microclimática en el gradiente altitudinal estudiado. Encontramos que A. iberica puede compensar por la disminución de la temperatura media que acompaña al incremento en elevación. Las hormigas pueden cambiar sus ritmos de actividad sin afectar la entrada de alimento en la colonia, que tampoco se ve afectada por la elevación o la temperatura media diaria. A pesar de esta eficiente termorregulación a nivel de colonia, las diferencias estadísticamente significativas entre poblaciones observadas en la tolerancia térmica individual sugieren que la termorregulación controlada comportalmente no limita las adaptaciones fisiológicas individuales para enfrentarse a temperaturas extremas.


Asunto(s)
Hormigas , Aclimatación , Animales , Calor , España , Temperatura
8.
Glob Chang Biol ; 24(10): 4614-4625, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29851235

RESUMEN

The relationship between levels of dominance and species richness is highly contentious, especially in ant communities. The dominance-impoverishment rule states that high levels of dominance only occur in species-poor communities, but there appear to be many cases of high levels of dominance in highly diverse communities. The extent to which dominant species limit local richness through competitive exclusion remains unclear, but such exclusion appears more apparent for non-native rather than native dominant species. Here we perform the first global analysis of the relationship between behavioral dominance and species richness. We used data from 1,293 local assemblages of ground-dwelling ants distributed across five continents to document the generality of the dominance-impoverishment rule, and to identify the biotic and abiotic conditions under which it does and does not apply. We found that the behavioral dominance-diversity relationship varies greatly, and depends on whether dominant species are native or non-native, whether dominance is considered as occurrence or relative abundance, and on variation in mean annual temperature. There were declines in diversity with increasing dominance in invaded communities, but diversity increased with increasing dominance in native communities. These patterns occur along the global temperature gradient. However, positive and negative relationships are strongest in the hottest sites. We also found that climate regulates the degree of behavioral dominance, but differently from how it shapes species richness. Our findings imply that, despite strong competitive interactions among ants, competitive exclusion is not a major driver of local richness in native ant communities. Although the dominance-impoverishment rule applies to invaded communities, we propose an alternative dominance-diversification rule for native communities.


Asunto(s)
Hormigas/fisiología , Biodiversidad , Animales , Clima , Ecosistema
9.
J Anim Ecol ; 87(1): 47-58, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28940239

RESUMEN

Allee effects have important implications for many aspects of basic and applied ecology. The benefits of aggregation of conspecific individuals are central to Allee effects, which have led to the widely held assumption that social species are more prone to Allee effects. Robust evidence for this assumption, however, remains rare. Furthermore, previous research on Allee effects has failed to adequately address the consequences of the different levels of organisation within social species' populations. Here, we review available evidence of Allee effects and model the role of demographic and behavioural factors that may combine to dampen or strengthen Allee effects in social species. We use examples across various species with contrasting social structure, including carnivores, bats, primates and eusocial insects. Building on this, we provide a conceptual framework that allows for the integration of different Allee effects in social species. Social species are characterised by nested levels of organisation. The benefits of cooperation, measured by mean individual fitness, can be observed at both the population and group levels, giving rise to "population level" and "group level" Allee effects respectively. We also speculate on the possibility of a third level, reporting per capita benefits for different individuals within a group (e.g. castes in social insects). We show that group size heterogeneity and intergroup interactions affect the strength of population-level demographic Allee effects. Populations with higher group size heterogeneity and in which individual social groups cooperate demonstrate the weakest Allee effects and may thus provide an explanation for why extinctions due to Allee effects are rare in social species. More adequately accounting for Allee effects in social species will improve our understanding of the ecological and evolutionary implications of cooperation in social species.


Asunto(s)
Aptitud Genética , Insectos/fisiología , Mamíferos/fisiología , Animales , Evolución Biológica , Modelos Biológicos , Densidad de Población , Conducta Social
10.
Ecology ; 98(3): 883-884, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-27984661

RESUMEN

What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set.


Asunto(s)
Hormigas/fisiología , Bases de Datos Factuales , Ecología , Animales , Hormigas/clasificación , Ecosistema
11.
Radiographics ; 37(1): 323-345, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28076010

RESUMEN

Foreign-body (FB) ingestion is less common in adults than in children, but still occurs. Diagnostic management of patients with suspected FB ingestion in emergency departments depends on FB type and location, both of which are related to the patient profile. In adults, fish and chicken bones are the most common FB types, and the oropharynx and cricopharyngeal muscle are the most common locations. Once accidentally swallowed, an FB may become lodged in the oropharynx, and in such cases indirect or fiberoptic laryngoscopy is the first clinical management option. For FBs that have passed beyond this location, radiologic study is recommended, including anteroposterior and lateral neck radiographs (LNRs) using the soft-tissue technique. This is a quick and simple imaging method that in emergency departments achieves detection rates of 70%-80% in assessing FBs in the hypopharynx and upper cervical esophagus. Careful initial evaluation using LNRs can determine the presence and nature of an FB, which helps with predicting the location and risk assessment, making further imaging-including computed tomography-unnecessary. Prevertebral soft-tissue swelling is a nonspecific indirect sign, which in the appropriate clinical context raises suspicion of a radiolucent FB or related complications. LNRs can sometimes be difficult to interpret due to the presence of multiple overlapping soft-tissue structures and variable patterns of laryngeal cartilage calcification in adults. Adequate performance in interpreting LNRs along with familiarity with the full diagnostic process in these patients will enable radiologists to use the right imaging technique for the right patient, as described in the clinical algorithm proposed by the authors. ©RSNA, 2017.


Asunto(s)
Bezoares/diagnóstico por imagen , Errores Diagnósticos/prevención & control , Traumatismos del Cuello/diagnóstico por imagen , Posicionamiento del Paciente/métodos , Intensificación de Imagen Radiográfica/métodos , Traumatismos de los Tejidos Blandos/diagnóstico por imagen , Adulto , Artefactos , Femenino , Humanos , Masculino , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
12.
Oecologia ; 185(1): 95-106, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28831573

RESUMEN

Predator-prey interactions play a key role in the success and impacts of invasive species. However, the effects of invasive preys on native predators have been poorly studied. Here, we first reviewed hypotheses describing potential relationships between native predators and invasive preys. Second, we examined how an invasive prey, the Argentine ant (Linepithema humile), affected a native terrestrial amphibian community. In the field, we looked at the structure of the amphibian community in invaded versus uninvaded areas and characterized amphibian trophic ecology. The amphibian community sampled seemed to show a species-dependent response in abundance to invasion: adults of the natterjack toad (Bufo calamita), the species demonstrating the highest degree of ant specialization, were less abundant in invaded areas. Although available ant biomass was significantly greater in invaded than in uninvaded areas (only Argentine ants occurred in the former), amphibians consumed relatively fewer ants in invaded areas. In the lab, we quantified amphibian consumption of Argentine ants versus native ants and assessed whether consumption patterns could have been influenced by prior exposure to the invader. The lab experiments corroborated the field results: amphibians preferred native ants over Argentine ants, and prior exposure did not influence consumption. Differences in preference explained why amphibians consumed fewer Argentine ants in spite of their greater relative availability; they might also explain why the most ant-specialized amphibians seemed to avoid invaded areas. Our results suggest the importance to account for predator feeding capacities and dietary ranges to understand the effects of invasive species at higher trophic levels.


Asunto(s)
Hormigas/fisiología , Bufonidae/fisiología , Especies Introducidas , Conducta Predatoria , Animales , Ecosistema
13.
Proc Biol Sci ; 282(1808): 20150418, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-25994675

RESUMEN

Many studies have focused on the impacts of climate change on biological assemblages, yet little is known about how climate interacts with other major anthropogenic influences on biodiversity, such as habitat disturbance. Using a unique global database of 1128 local ant assemblages, we examined whether climate mediates the effects of habitat disturbance on assemblage structure at a global scale. Species richness and evenness were associated positively with temperature, and negatively with disturbance. However, the interaction among temperature, precipitation and disturbance shaped species richness and evenness. The effect was manifested through a failure of species richness to increase substantially with temperature in transformed habitats at low precipitation. At low precipitation levels, evenness increased with temperature in undisturbed sites, peaked at medium temperatures in disturbed sites and remained low in transformed sites. In warmer climates with lower rainfall, the effects of increasing disturbance on species richness and evenness were akin to decreases in temperature of up to 9°C. Anthropogenic disturbance and ongoing climate change may interact in complicated ways to shape the structure of assemblages, with hot, arid environments likely to be at greatest risk.


Asunto(s)
Hormigas/fisiología , Biodiversidad , Clima , Animales , Cambio Climático , Temperatura
14.
Front Zool ; 10(1): 11, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23496951

RESUMEN

BACKGROUND: Allee effects may arise as the number of individuals decreases, thereby reducing opportunities for cooperation and constraining individual fitness, which can lead to population decrease and extinction. Obligate cooperative breeders rely on a minimum group size to subsist and are thus expected to be particularly susceptible to Allee effects. Although Allee effects in some components of the fitness of cooperative breeders have been detected, empirical confirmation of population extinction due to Allee effects is lacking yet. Because previous studies of cooperation have focused on Allee effects affecting individual fitness (component Allee effect) and population dynamics (demographic Allee effect), we argue that a new conceptual level of Allee effect, the group Allee effect, is needed to understand the special case of cooperative breeders. RESULTS: We hypothesize that whilst individuals are vulnerable to Allee effects, the group could act as a buffer against population extinction if: (i) individual fitness and group fate depend on group size but not on population size and (ii) group size is independent of population size (that is, at any population size, populations comprise both large and small groups). We found that both conditions apply for the African wild dog, Lycaon pictus, and data on this species in Zimbabwe support our hypothesis. CONCLUSIONS: The importance of groups in obligate cooperative breeders needs to be accounted for within the Allee effect framework, through a group Allee effect, because the group mediates the relationship between individual fitness and population performance. Whilst sociality is associated with a high probability of Allee effects, we suggest that cooperative individuals organized in relatively autonomous groups within populations might be behaving in ways that diminish extinction risks caused by Allee effects. This study opens new avenues to a better understanding of the role of the evolution of group-living on the probability of extinction faced by social species.

15.
Oecologia ; 173(1): 95-105, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22915331

RESUMEN

Amphibian larvae constitute a large fraction of the biomass of wetlands and play important roles in their energy flux and nutrient cycling. Interactions with predators and competitors affect their abundance but also their foraging behaviour, potentially leading to non-consumptive cascading effects on the whole trophic web. We experimentally tested for plastic changes in larval trophic ecology of two anuran species in response to competitors and the non-lethal presence of native and non-native predators, using stable isotope analysis. We hypothesized that tadpoles would alter their diet in the presence of competitors and native predators, and to a lesser extent or not at all in the presence of non-native predators. First, we conducted a controlled diet experiment to estimate tadpole turnover rates and discrimination factors using Pelobates cultripes and Bufo calamita. Turnover rates yielded a half-life of 15-20 days (attaining a quasi-isotopic equilibrium after 2 months), whereas discrimination factors for natural controlled diets resulted in different isotopic values essential for calibration. Second, we did an experiment with P. cultripes and Rana perezi (=Pelophylax perezi) where we manipulated the presence/absence of predators and heterospecific tadpoles using microcosms in the laboratory. We detected a significant shift in trophic status of both amphibian species in the presence of non-native crayfish: the δ(15)N values and macrophyte consumption of tadpoles increased, whereas their detritus consumption decreased. This suggests that tadpoles could have perceived crayfish as a predatory risk or that crayfish acted as competitors for algae and zooplankton. No dietary changes were observed in the presence of native dragonflies or when both tadpole species co-occurred. Stable isotopic analysis is an efficient way to assess variation in tadpoles' tropic status and hence understand their role in freshwater ecosystems. Here we provide baseline isotopic information for future trophic studies and show evidence for plastic changes in tadpoles' use of food resources under different ecological scenarios.


Asunto(s)
Anuros/fisiología , Bufonidae/fisiología , Cadena Alimentaria , Animales , Anuros/metabolismo , Bufonidae/metabolismo , Isótopos de Carbono/análisis , Isótopos de Carbono/química , Especies Introducidas , Larva/metabolismo , Larva/fisiología , Isótopos de Nitrógeno/análisis , Isótopos de Nitrógeno/química , Humedales
16.
PLoS One ; 18(10): e0292854, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37851652

RESUMEN

The adverse impacts of alien birds are widespread and diverse, and associated with costs due to the damage caused and actions required to manage them. We synthesised global cost data to identify variation across regions, types of impact, and alien bird species. Costs amount to US$3.6 billion, but this is likely a vast underestimate. Costs are low compared to other taxonomic groups assessed using the same methods; despite underreporting, alien birds are likely to be less damaging and easier to manage than many other alien taxa. Research to understand why this is the case could inform measures to reduce costs associated with biological invasions. Costs are biassed towards high-income regions and damaging environmental impacts, particularly on islands. Most costs on islands result from actions to protect biodiversity and tend to be low and one-off (temporary). Most costs at mainland locations result from damage by a few, widespread species. Some of these costs are high and ongoing (permanent). Actions to restrict alien bird invasions at mainland locations might prevent high, ongoing costs. Reports increased sharply after 2010, but many are for local actions to manage expanding alien bird populations. However, the successful eradication of these increasingly widespread species will require a coordinated, international response.


Asunto(s)
Biodiversidad , Especies Introducidas , Animales , Dinámica Poblacional , Aves/fisiología , Ecosistema
17.
Sci Total Environ ; 887: 164132, 2023 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-37182778

RESUMEN

Wildfires play a determinant role in the composition and structure of animal communities, especially for groups closely associated with the vegetation and soil, such as bees or ants. The effects of fire on animal communities depend on the functional traits of each group. Here, we assessed the impacts of fire and time since fire on the taxonomic and functional responses of ant and bee communities. We sampled 35 pine forests in Andalusia (southern Spain) that had experienced fire in the past (0 to 41 years ago). Specifically, we explored whether a) fire increased taxonomic and functional diversity and changed community composition in communities in the short term and b) fire influence (increase or decrease) on ant communities would be dependent on time since fire. We found that ant and bee taxonomic richness increased regardless of time since fire. Different approaches gave the same result, such as taxonomic diversity indexes (ant abundance, ant richness and ant Shannon diversity index), the changes in species richness in ant and bee communities, as well as the higher number of ant and bee species prone to the burned habitat than to the unburned habitat, using the Ihabitat Index. Besides environmental variables (such as the effects of different Pinus species or elevation), time since fire changed the taxonomic composition of ant communities and the functional composition of bee communities. Moreover, six of the 13 ant functional traits explored differed between burned and unburned areas, with the degree of difference declining as time since fire increased. For example, burned areas contained ant communities with more ground-nesting species and strictly diurnal species, functional traits that are characteristic of open areas. In contrast, other traits persisted in burned areas over the long term, notably a higher degree of worker polymorphism and species monogyny. Our study shows how much short- and long-term effects of fire on ant and bee communities differ; while richness increases in the long-term, some functional traits are also filtered in the short-term. We suggest that fire in Mediterranean coniferous ecosystems could have a positive effect on these groups and should not be overlooked.


Asunto(s)
Hormigas , Pinus , Abejas , Animales , Ecosistema , Hormigas/fisiología , España , Bosques , Suelo
18.
Toxins (Basel) ; 15(4)2023 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-37104173

RESUMEN

The globally invasive Argentine ant (Linepithema humile) possesses a venom lethal to some amphibian species in the invaded range. To test the novel weapons hypothesis (NWH), the effects of the toxin on the cohabiting amphibian species in the ant's native range need to be investigated. The invader should benefit from the novel chemical in the invaded range, because the species are not adapted, but the venom should not be effective in the native range. We explore the venom effects on juveniles of three amphibian species with different degrees of myrmecophagy inhabiting the ant's native range: Rhinella arenarum, Odontophrynus americanus, and Boana pulchella. We exposed the amphibians to the ant venom, determined the toxic dose, and evaluated the short- (10 min to 24 h) and medium-term (14 days) effects. All amphibian species were affected by the venom independently of myrmecophagy. In addition to amphibian sensitivity, we discuss how the differential Argentine ant abundance and density in the two ranges could be the key to the susceptibility of amphibians to the venom, resulting in the possibility of NWH. Our results confirm the potential magnitude of the impact of the Argentine ant in successfully invaded areas for the conservation of already threatened amphibians.


Asunto(s)
Venenos de Hormiga , Hormigas , Animales , Anuros
19.
PeerJ ; 11: e14935, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36992943

RESUMEN

Background: Rodents are among the most notorious invasive alien species worldwide. These invaders have substantially impacted native ecosystems, food production and storage, local infrastructures, human health and well-being. However, the lack of standardized and understandable estimation of their impacts is a serious barrier to raising societal awareness, and hampers effective management interventions at relevant scales. Methods: Here, we assessed the economic costs of invasive alien rodents globally in order to help overcome these obstacles. For this purpose, we combined and analysed economic cost data from the InvaCost database-the most up-to-date and comprehensive synthesis of reported invasion costs-and specific complementary searches within and beyond the published literature. Results: Our conservative analysis showed that reported costs of rodent invasions reached a conservative total of US$ 3.6 billion between 1930 and 2022 (annually US$ 87.5 million between 1980 and 2022), and were significantly increasing through time. The highest cost reported was for muskrat Ondatra zibethicus (US$ 377.5 million), then unspecified Rattus spp. (US$ 327.8 million), followed by Rattus norvegicus specifically (US$ 156.6 million) and Castor canadensis (US$ 150.4 million). Of the total costs, 87% were damage-related, principally impacting agriculture and predominantly reported in Asia (60%), Europe (19%) and North America (9%). Our study evidenced obvious cost underreporting with only 99 documents gathered globally, clear taxonomic gaps, reliability issues for cost assessment, and skewed breakdowns of costs among regions, sectors and contexts. As a consequence, these reported costs represent only a very small fraction of the expected true cost of rodent invasions (e.g., using a less conservative analytic approach would have led to a global amount more than 80-times higher than estimated here). Conclusions: These findings strongly suggest that available information represents a substantial underestimation of the global costs incurred. We offer recommendations for improving estimates of costs to fill these knowledge gaps including: systematic distinction between native and invasive rodents' impacts; monetizing indirect impacts on human health; and greater integrative and concerted research effort between scientists and stakeholders. Finally, we discuss why and how this approach will stimulate and provide support for proactive and sustainable management strategies in the context of alien rodent invasions, for which biosecurity measures should be amplified globally.


Asunto(s)
Ecosistema , Roedores , Humanos , Animales , Ratas , Reproducibilidad de los Resultados , Costo de Enfermedad , Europa (Continente) , Especies Introducidas
20.
Sci Rep ; 13(1): 8945, 2023 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-37268662

RESUMEN

The high ecological impacts of many invasive alien trees have been well documented. However, to date, we lacked synthesis of their economic impacts, hampering management actions. Here, we summarize the cost records of invasive trees to (I) identify invasive trees with cost information and their geographic locations, (II) investigate the types of costs recorded and sectors impacted by invasive trees and (III) analyze the relationships between categories of uses of invasive trees and the invasion costs attributed to these uses. We found reliable cost records only for 72 invasive trees, accumulating a reported total cost of $19.2 billion between 1960 and 2020. Agriculture was the sector with the highest cost records due to invasive trees. Most costs were incurred as resource damages and losses ($3.5 billion). Close attention to the ornamental sector is important for reducing the economic impact of invasive trees, since most invasive trees with cost records were introduced for that use. Despite massive reported costs of invasive trees, there remain large knowledge gaps on most invasive trees, sectors, and geographic scales, indicating that the real cost is severely underestimated. This highlights the need for further concerted and widely-distributed research efforts regarding the economic impact of invasive trees.


Asunto(s)
Ambiente , Árboles , Agricultura , Especies Introducidas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda