Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Am J Respir Cell Mol Biol ; 71(1): 95-109, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38546978

RESUMEN

Pulmonary arterial (PA) hypertension (PAH) is a severe cardiopulmonary disease that may be triggered by exposure to drugs such as dasatinib or facilitated by genetic predispositions. The incidence of dasatinib-associated PAH is estimated at 0.45%, suggesting individual predispositions. The mechanisms of dasatinib-associated PAH are still incomplete. We discovered a KCNK3 gene (Potassium channel subfamily K member 3; coding for outward K+ channel) variant in a patient with dasatinib-associated PAH and investigated the impact of this variant on KCNK3 function. Additionally, we assessed the effects of dasatinib exposure on KCNK3 expression. In control human PA smooth muscle cells (hPASMCs) and human pulmonary endothelial cells (hPECs), we evaluated the consequences of KCNK3 knockdown on cell migration, mitochondrial membrane potential, ATP production, and in vitro tube formation. Using mass spectrometry, we determined the KCNK3 interactome. Patch-clamp experiments revealed that the KCNK3 variant represents a loss-of-function variant. Dasatinib contributed to PA constriction by decreasing KCNK3 function and expression. In control hPASMCs, KCNK3 knockdown promotes mitochondrial membrane depolarization and glycolytic shift. Dasatinib exposure or KCNK3 knockdown reduced the number of caveolae in hPECs. Moreover, KCNK3 knockdown in control hPECs reduced migration, proliferation, and in vitro tubulogenesis. Using proximity labeling and mass spectrometry, we identified the KCNK3 interactome, revealing that KCNK3 interacts with various proteins across different cellular compartments. We identified a novel pathogenic variant in KCNK3 and showed that dasatinib downregulates KCNK3, emphasizing the relationship between dasatinib-associated PAH and KCNK3 dysfunction. We demonstrated that a loss of KCNK3-dependent signaling contributes to endothelial dysfunction in PAH and glycolytic switch of hPASMCs.


Asunto(s)
Dasatinib , Células Endoteliales , Canales de Potasio de Dominio Poro en Tándem , Dasatinib/farmacología , Dasatinib/efectos adversos , Humanos , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Movimiento Celular/efectos de los fármacos , Hipertensión Arterial Pulmonar/inducido químicamente , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/patología , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/patología , Masculino , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Arteria Pulmonar/efectos de los fármacos , Proteínas del Tejido Nervioso
2.
Eur Respir J ; 63(6)2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697649

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) has been described in patients treated with proteasome inhibitors (PIs). Our objective was to evaluate the association between PIs and PAH. METHODS: Characteristics of incident PAH cases previously treated with carfilzomib or bortezomib were analysed from the French pulmonary hypertension registry and the VIGIAPATH programme from 2004 to 2023, concurrently with a pharmacovigilance disproportionality analysis using the World Health Organization (WHO) global database (VigiBase) and a meta-analysis of randomised controlled trials. RESULTS: 11 incident cases of PI-associated PAH were identified (six with carfilzomib and five with bortezomib) with a female:male ratio of 2.7:1, a median age of 61 years, and a median delay between PI first exposure and PAH of 6 months. Four patients died (two from right heart failure, one from respiratory distress and one from an unknown cause). At diagnosis, six were in New York Heart Association Functional Class III/IV with severe haemodynamic impairment (median mean pulmonary arterial pressure 39 mmHg, cardiac index 2.45 L·min-1·m-2 and pulmonary vascular resistance 7.2 WU). In the WHO pharmacovigilance database, 169 cases of PH associated with PI were reported since 2013 with significant signals of disproportionate reporting (SDR) for carfilzomib, regardless of the definition of cases or control group. However, SDR for bortezomib were inconsistent. The systematic review identified 17 clinical trials, and carfilzomib was associated with a significantly higher risk of dyspnoea, severe dyspnoea and PH compared with bortezomib. CONCLUSION: PIs may induce PAH in patients undergoing treatment, with carfilzomib emitting a stronger signal than bortezomib, and these patients should be monitored closely.


Asunto(s)
Bortezomib , Oligopéptidos , Inhibidores de Proteasoma , Hipertensión Arterial Pulmonar , Humanos , Persona de Mediana Edad , Bortezomib/efectos adversos , Bortezomib/uso terapéutico , Francia/epidemiología , Oligopéptidos/efectos adversos , Oligopéptidos/uso terapéutico , Farmacovigilancia , Inhibidores de Proteasoma/efectos adversos , Inhibidores de Proteasoma/uso terapéutico , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Hipertensión Arterial Pulmonar/inducido químicamente , Ensayos Clínicos Controlados Aleatorios como Asunto , Sistema de Registros
3.
Eur Respir J ; 63(4)2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514094

RESUMEN

BACKGROUND: Bone morphogenetic proteins 9 and 10 (BMP9 and BMP10), encoded by GDF2 and BMP10, respectively, play a pivotal role in pulmonary vascular regulation. GDF2 variants have been reported in pulmonary arterial hypertension (PAH) and hereditary haemorrhagic telangiectasia (HHT). However, the phenotype of GDF2 and BMP10 carriers remains largely unexplored. METHODS: We report the characteristics and outcomes of PAH patients in GDF2 and BMP10 carriers from the French and Dutch pulmonary hypertension registries. A literature review explored the phenotypic spectrum of these patients. RESULTS: 26 PAH patients were identified: 20 harbouring heterozygous GDF2 variants, one homozygous GDF2 variant, four heterozygous BMP10 variants, and one with both GDF2 and BMP10 variants. The prevalence of GDF2 and BMP10 variants was 1.3% and 0.4%, respectively. Median age at PAH diagnosis was 30 years, with a female/male ratio of 1.9. Congenital heart disease (CHD) was present in 15.4% of the patients. At diagnosis, most of the patients (61.5%) were in New York Heart Association Functional Class III or IV with severe haemodynamic compromise (median (range) pulmonary vascular resistance 9.0 (3.3-40.6) WU). Haemoptysis was reported in four patients; none met the HHT criteria. Two patients carrying BMP10 variants underwent lung transplantation, revealing typical PAH histopathology. The literature analysis showed that 7.6% of GDF2 carriers developed isolated HHT, and identified cardiomyopathy and developmental disorders in BMP10 carriers. CONCLUSIONS: GDF2 and BMP10 pathogenic variants are rare among PAH patients, and occasionally associated with CHD. HHT cases among GDF2 carriers are limited according to the literature. BMP10 full phenotypic ramifications warrant further investigation.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Telangiectasia Hemorrágica Hereditaria , Humanos , Masculino , Femenino , Adulto , Proteínas Morfogenéticas Óseas/genética , Proteínas Morfogenéticas Óseas/metabolismo , Hipertensión Pulmonar/diagnóstico , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/complicaciones , Hipertensión Pulmonar Primaria Familiar , Telangiectasia Hemorrágica Hereditaria/complicaciones , Telangiectasia Hemorrágica Hereditaria/genética , Fenotipo , Factor 2 de Diferenciación de Crecimiento/genética , Estudios Multicéntricos como Asunto
4.
Circ Res ; 131(9): e102-e119, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36164973

RESUMEN

BACKGROUND: Pulmonary arterial hypertension (PAH) is characterized by progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated intracellular calcium (Ca2+) signaling contributes to abnormalities in PA smooth muscle cells (PASMCs), including aberrant proliferation, apoptosis resistance, exacerbated migration, and arterial contractility. Store-operated Ca2+ entry is involved in Ca2+ homeostasis in PASMCs, but its properties in PAH are unclear. METHODS: Using a combination of Ca2+ imaging, molecular biology, in vitro, ex vivo, and in vivo approaches, we investigated the roles of the Orai1 SOC channel in PA remodeling in PAH and determined the consequences of pharmacological Orai1 inhibition in vivo using experimental models of pulmonary hypertension (PH). RESULTS: Store-operated Ca2+ entry and Orai1 mRNA and protein were increased in human PASMCs (hPASMCs) from patients with PAH (PAH-hPASMCs). We found that MEK1/2 (mitogen-activated protein kinase kinase 1/2), NFAT (nuclear factor of activated T cells), and NFκB (nuclear factor-kappa B) contribute to the upregulation of Orai1 expression in PAH-hPASMCs. Using small interfering RNA (siRNA) and Orai1 inhibitors, we found that Orai1 inhibition reduced store-operated Ca2+ entry, mitochondrial Ca2+ uptake, aberrant proliferation, apoptosis resistance, migration, and excessive calcineurin activity in PAH-hPASMCs. Orai1 inhibitors reduced agonist-evoked constriction in human PAs. In experimental rat models of PH evoked by chronic hypoxia, monocrotaline, or Sugen/hypoxia, administration of Orai1 inhibitors (N-{4-[3,5-bis(Trifluoromethyl)-1H-pyrazol-1-yl]phenyl}-4-methyl-1,2,3-thiadiazole-5-carboxamide [BTP2], 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline [JPIII], or 5J4) protected against PH. CONCLUSIONS: In human PAH and experimental PH, Orai1 expression and activity are increased. Orai1 inhibition normalizes the PAH-hPASMCs phenotype and attenuates PH in rat models. These results suggest that Orai1 should be considered as a relevant therapeutic target for PAH.


Asunto(s)
Compuestos de Anilina , Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Tiadiazoles , Animales , Humanos , Ratas , Compuestos de Anilina/uso terapéutico , Calcineurina/metabolismo , Calcio/metabolismo , Proliferación Celular/genética , Células Cultivadas , Hipertensión Pulmonar/tratamiento farmacológico , Hipoxia/metabolismo , MAP Quinasa Quinasa 1/metabolismo , Monocrotalina/toxicidad , Miocitos del Músculo Liso/metabolismo , Proteína ORAI1 , Arteria Pulmonar/metabolismo , ARN Mensajero/metabolismo , ARN Interferente Pequeño/metabolismo , Tiadiazoles/metabolismo
5.
J Physiol ; 601(17): 3717-3737, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37477289

RESUMEN

Potassium channel subfamily K member 3 (KCNK3), encoded by the KCNK3 gene, is part of the two-pore domain potassium channel family, constitutively active at resting membrane potentials in excitable cells, including smooth muscle and cardiac cells. Several physiological and pharmacological mediators, such as intracellular signalling pathways, extracellular pH, hypoxia and anaesthetics, regulate KCNK3 channel function. Recent studies show that modulation of KCNK3 channel expression and function strongly influences pulmonary vascular cell and cardiomyocyte function. The altered activity of KCNK3 in pathological situations such as atrial fibrillation, pulmonary arterial hypertension and right ventricular dysfunction demonstrates the crucial role of KCNK3 in cardiovascular homeostasis. Furthermore, loss of function variants of KCNK3 have been identified in patients suffering from pulmonary arterial hypertension and atrial fibrillation. This review focuses on current knowledge of the role of the KCNK3 channel in pulmonary circulation and the heart, in healthy and pathological conditions.


Asunto(s)
Fibrilación Atrial , Canales de Potasio de Dominio Poro en Tándem , Hipertensión Arterial Pulmonar , Humanos , Circulación Pulmonar , Fibrilación Atrial/genética , Fibrilación Atrial/metabolismo , Potenciales de la Membrana , Pulmón/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo
6.
Am J Physiol Lung Cell Mol Physiol ; 325(2): L246-L261, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37366608

RESUMEN

Pulmonary arterial hypertension (PAH) is due to progressive distal pulmonary artery (PA) obstruction, leading to right ventricular hypertrophy and failure. Exacerbated store-operated Ca2+ entry (SOCE) contributes to PAH pathogenesis, mediating human PA smooth muscle cell (hPASMC) abnormalities. The transient receptor potential canonical channels (TRPC family) are Ca2+-permeable channels contributing to SOCE in different cell types, including PASMCs. However, the properties, signaling pathways, and contribution to Ca2+ signaling of each TRPC isoform are unclear in human PAH. We studied in vitro the impact of TRPC knockdown on control and PAH-hPASMCs function. In vivo, we analyzed the consequences of pharmacological TRPC inhibition using the experimental model of pulmonary hypertension (PH) induced by monocrotaline (MCT) exposure. Compared with control-hPASMCs cells, in PAH-hPASMCs, we found a decreased TRPC4 expression, overexpression of TRPC3 and TRPC6, and unchanged TRPC1 expression. Using the siRNA strategy, we found that the knockdown of TRPC1-C3-C4-C6 reduced the SOCE and the proliferation rate of PAH-hPASMCs. Only TRPC1 knockdown decreased the migration capacity of PAH-hPASMCs. After PAH-hPASMCs exposure to the apoptosis inducer staurosporine, TRPC1-C3-C4-C6 knockdown increased the percentage of apoptotic cells, suggesting that these channels promote apoptosis resistance. Only TRPC3 function contributed to exacerbated calcineurin activity. In the MCT-PH rat model, only TRPC3 protein expression was increased in lungs compared with control rats, and in vivo "curative" administration of a TRPC3 inhibitor attenuated PH development in rats. These results suggest that TRPC channels contribute to PAH-hPASMCs dysfunctions, including SOCE, proliferation, migration, and apoptosis resistance, and could be considered as therapeutic targets in PAH.NEW & NOTEWORTHY TRPC3 is increased in human and experimental pulmonary arterial hypertension (PAH). In PAH pulmonary arterial smooth muscle cells, TRPC3 participates in the aberrant store-operated Ca2+ entry contributing to their pathological cell phenotypes (exacerbated proliferation, enhanced migration, apoptosis resistance, and vasoconstriction). Pharmacological in vivo inhibition of TRPC3 reduces the development of experimental PAH. Even if other TRPC acts on PAH development, our results prove that TRPC3 inhibition could be considered as an innovative treatment for PAH.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Canales de Potencial de Receptor Transitorio , Humanos , Ratas , Animales , Canales de Potencial de Receptor Transitorio/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo , Hipertensión Pulmonar Primaria Familiar/metabolismo , Hipertensión Pulmonar/patología , Arteria Pulmonar/metabolismo , Miocitos del Músculo Liso/metabolismo , Calcio/metabolismo
7.
J Cell Sci ; 134(3)2021 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-33468626

RESUMEN

Since deregulation of intracellular Ca2+ can lead to intracellular trypsin activation, and stromal interaction molecule-1 (STIM1) protein is the main regulator of Ca2+ homeostasis in pancreatic acinar cells, we explored the Ca2+ signaling in 37 STIM1 variants found in three pancreatitis patient cohorts. Extensive functional analysis of one particular variant, p.E152K, identified in three patients, provided a plausible link between dysregulated Ca2+ signaling within pancreatic acinar cells and chronic pancreatitis susceptibility. Specifically, p.E152K, located within the STIM1 EF-hand and sterile α-motif domain, increased the release of Ca2+ from the endoplasmic reticulum in patient-derived fibroblasts and transfected HEK293T cells. This event was mediated by altered STIM1-sarco/endoplasmic reticulum calcium transport ATPase (SERCA) conformational change and enhanced SERCA pump activity leading to increased store-operated Ca2+ entry (SOCE). In pancreatic AR42J cells expressing the p.E152K variant, Ca2+ signaling perturbations correlated with defects in trypsin activation and secretion, and increased cytotoxicity after cholecystokinin stimulation.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Señalización del Calcio , Proteínas de Neoplasias , Pancreatitis Crónica , Molécula de Interacción Estromal 1 , Calcio/metabolismo , Señalización del Calcio/genética , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Mutación/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteína ORAI1/metabolismo , Pancreatitis Crónica/genética , Pancreatitis Crónica/metabolismo , Molécula de Interacción Estromal 1/genética , Molécula de Interacción Estromal 1/metabolismo
8.
Am J Respir Cell Mol Biol ; 66(5): 539-554, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35175177

RESUMEN

Mutations in ABCC8 have been identified in pulmonary arterial hypertension (PAH). ABCC8 encodes SUR1, a regulatory subunit of the ATP-sensitive potassium channel Kir6.2. However, the pathophysiological role of the SUR1/Kir6.2 channel in PAH is unknown. We hypothesized that activation of SUR1 could be a novel potential target for PAH. We analyzed the expression of SUR1/Kir6.2 in the lungs and pulmonary artery (PA) in human PAH or experimental pulmonary hypertension (PH). The contribution of SUR1 in human or rat PA tone was evaluated, and we measured the consequences of in vivo activation of SUR1 in control and PH rats. SUR1 and Kir6.2 protein expression was not reduced in the lungs or human pulmonary arterial endothelial cells and smooth muscle cells from PAH or experimentally induced PH. We showed that pharmacological activation of SUR1 by three different SUR1 activators (diazoxide, VU0071063, and NN414) leads to PA relaxation. Conversely, the inhibition of SUR1/Kir6.2 channels causes PA constriction. In vivo, long- and short-term activation of SUR1 with diazoxide reversed monocrotaline-induced PH in rats. In addition, in vivo diazoxide application (short protocol) reduced the severity of PH in chronic-hypoxia rats. Moreover, 3 weeks of diazoxide exposure in control rats had no cardiovascular effects. Finally, in vivo, activation of SUR1 with NN414 reduced monocrotaline-induced PH in rats. In PAH and experimental PH, the expression of SUR1/Kir6.2 was still present. In vivo pharmacological SUR1 activation by two different molecules alleviated experimental PH, providing proof of concept that SUR1 activation should be considered for PAH and evaluated more thoroughly.


Asunto(s)
Diazóxido , Hipertensión Arterial Pulmonar , Animales , Diazóxido/farmacología , Células Endoteliales , Hipertensión Pulmonar Primaria Familiar , Monocrotalina , Hipertensión Arterial Pulmonar/tratamiento farmacológico , Ratas
9.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-36012204

RESUMEN

Proteins interacting with CFTR and its mutants have been intensively studied using different experimental approaches. These studies provided information on the cellular processes leading to proper protein folding, routing to the plasma membrane, recycling, activation and degradation. Recently, new approaches have been developed based on the proximity labeling of protein partners or proteins in close vicinity and their subsequent identification by mass spectrometry. In this study, we evaluated TurboID- and APEX2-based proximity labeling of WT CFTR and compared the obtained data to those reported in databases. The CFTR-WT interactome was then compared to that of two CFTR (G551D and W1282X) mutants and the structurally unrelated potassium channel KCNK3. The two proximity labeling approaches identified both known and additional CFTR protein partners, including multiple SLC transporters. Proximity labeling approaches provided a more comprehensive picture of the CFTR interactome and improved our knowledge of the CFTR environment.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Pliegue de Proteína , Membrana Celular/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Espectrometría de Masas , Mutación
10.
Circulation ; 141(3): 199-216, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31906693

RESUMEN

BACKGROUND: Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. METHODS: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. RESULTS: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca2+ signaling alterations (increased SOCE, decreased [Ca2+]i transients amplitude and decay rate, lower SR Ca2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. CONCLUSIONS: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.


Asunto(s)
Señalización del Calcio , Calcio/metabolismo , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Proteína ORAI1/antagonistas & inhibidores , Proteína ORAI1/metabolismo , Función Ventricular Izquierda , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Quinasa 2 de Adhesión Focal/genética , Quinasa 2 de Adhesión Focal/metabolismo , Ratones , Ratones Transgénicos , Miocitos Cardíacos/patología , Proteína ORAI1/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/genética , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo
11.
Eur Respir J ; 58(5)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33926975

RESUMEN

INTRODUCTION: A reduction in pulmonary artery relaxation is a key event in the pathogenesis of pulmonary arterial hypertension (PAH). Cystic fibrosis transmembrane conductance regulator (CFTR) dysfunction in airway epithelial cells plays a central role in cystic fibrosis; CFTR is also expressed in pulmonary arteries and has been shown to control endothelium-independent relaxation. AIM AND OBJECTIVES: We aimed to delineate the role of CFTR in PAH pathogenesis through observational and interventional experiments in human tissues and animal models. METHODS AND RESULTS: Reverse-transcriptase quantitative PCR, confocal imaging and electron microscopy showed that CFTR expression was reduced in pulmonary arteries from patients with idiopathic PAH (iPAH) and in rats with monocrotaline-induced pulmonary hypertension (PH). Moreover, using myography on human, pig and rat pulmonary arteries, we demonstrated that CFTR activation induces pulmonary artery relaxation. CFTR-mediated pulmonary artery relaxation was reduced in pulmonary arteries from iPAH patients and rats with monocrotaline- or chronic hypoxia-induced PH. Long-term in vivo CFTR inhibition in rats significantly increased right ventricular systolic pressure, which was related to exaggerated pulmonary vascular cell proliferation in situ and vessel neomuscularisation. Pathologic assessment of lungs from patients with severe cystic fibrosis (F508del-CFTR) revealed severe pulmonary artery remodelling with intimal fibrosis and medial hypertrophy. Lungs from homozygous F508delCftr rats exhibited pulmonary vessel neomuscularisation. The elevations in right ventricular systolic pressure and end diastolic pressure in monocrotaline-exposed rats with chronic CFTR inhibition were more prominent than those in vehicle-exposed rats. CONCLUSIONS: CFTR expression is strongly decreased in pulmonary artery smooth muscle and endothelial cells in human and animal models of PH. CFTR inhibition increases vascular cell proliferation and strongly reduces pulmonary artery relaxation.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Hipertensión Arterial Pulmonar , Animales , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Células Endoteliales , Humanos , Monocrotalina , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/patología , Ratas , Porcinos
12.
Circ Res ; 125(7): 678-695, 2019 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-31347976

RESUMEN

RATIONALE: Pulmonary arterial hypertension is a severe lethal cardiopulmonary disease. Loss of function mutations in KCNK3 (potassium channel subfamily K member 3) gene, which encodes an outward rectifier K+ channel, have been identified in pulmonary arterial hypertension patients. OBJECTIVE: We have demonstrated that KCNK3 dysfunction is common to heritable and nonheritable pulmonary arterial hypertension and to experimental pulmonary hypertension (PH). Finally, KCNK3 is not functional in mouse pulmonary vasculature. METHODS AND RESULTS: Using CRISPR/Cas9 technology, we generated a 94 bp out of frame deletion in exon 1 of Kcnk3 gene and characterized these rats at the electrophysiological, echocardiographic, hemodynamic, morphological, cellular, and molecular levels to decipher the cellular mechanisms associated with loss of KCNK3. Using patch-clamp technique, we validated our transgenic strategy by demonstrating the absence of KCNK3 current in freshly isolated pulmonary arterial smooth muscle cells from Kcnk3-mutated rats. At 4 months of age, echocardiographic parameters revealed shortening of the pulmonary artery acceleration time associated with elevation of the right ventricular systolic pressure. Kcnk3-mutated rats developed more severe PH than wild-type rats after monocrotaline exposure or chronic hypoxia exposure. Kcnk3-mutation induced a lung distal neomuscularization and perivascular extracellular matrix activation. Lungs of Kcnk3-mutated rats were characterized by overactivation of ERK1/2 (extracellular signal-regulated kinase1-/2), AKT (protein kinase B), SRC, and overexpression of HIF1-α (hypoxia-inducible factor-1 α), survivin, and VWF (Von Willebrand factor). Linked with plasma membrane depolarization, reduced endothelial-NOS expression and desensitization of endothelial-derived hyperpolarizing factor, Kcnk3-mutated rats presented predisposition to vasoconstriction of pulmonary arteries and a severe loss of sildenafil-induced pulmonary arteries relaxation. Moreover, we showed strong alteration of right ventricular cardiomyocyte excitability. Finally, Kcnk3-mutated rats developed age-dependent PH associated with low serum-albumin concentration. CONCLUSIONS: We established the first Kcnk3-mutated rat model of PH. Our results confirm that KCNK3 loss of function is a key event in pulmonary arterial hypertension pathogenesis. This model presents new opportunities for understanding the initiating mechanisms of PH and testing biologically relevant therapeutic molecules in the context of PH.


Asunto(s)
Modelos Animales de Enfermedad , Hipertensión Pulmonar/genética , Mutación con Pérdida de Función , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Potenciales de Acción , Animales , Presión Sanguínea , Femenino , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/metabolismo , Pulmón/patología , Masculino , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiología , Proteínas del Tejido Nervioso/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Ratas , Ratas Sprague-Dawley , Survivin/genética , Survivin/metabolismo , Vasoconstricción , Factor de von Willebrand/genética , Factor de von Willebrand/metabolismo
13.
Am J Respir Cell Mol Biol ; 63(1): 118-131, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209028

RESUMEN

Pulmonary veno-occlusive disease (PVOD) occurs in humans either as a heritable form (hPVOD) due to biallelic inactivating mutations of EIF2AK4 (encoding GCN2) or as a sporadic form in older age (sPVOD). The chemotherapeutic agent mitomycin C (MMC) is a potent inducer of PVOD in humans and in rats (MMC-PVOD). Here, we compared human hPVOD and sPVOD, and MMC-PVOD pathophysiology at the histological, cellular, and molecular levels to unravel common altered pathomechanisms. MMC exposure in rats was associated primarily with arterial and microvessel remodeling, and secondarily by venous remodeling, when PVOD became symptomatic. In all forms of PVOD tested, there was convergent GCN2-dependent but eIF2α-independent pulmonary protein overexpression of HO-1 (heme oxygenase 1) and CHOP (CCAAT-enhancer-binding protein [C/EBP] homologous protein), two downstream effectors of GCN2 signaling and endoplasmic reticulum stress. In human PVOD samples, CHOP immunohistochemical staining mainly labeled endothelial cells in remodeled veins and arteries. Strong HO-1 staining was observed only within capillary hemangiomatosis foci, where intense microvascular proliferation occurs. HO-1 and CHOP stainings were not observed in control and pulmonary arterial hypertension lung tissues, supporting the specificity for CHOP and HO-1 involvement in PVOD pathobiology. In vivo loss of GCN2 (EIF2AK4 mutations carriers and Eif2ak4-/- rats) or in vitro GCN2 inhibition in cultured pulmonary artery endothelial cells using pharmacological and siRNA approaches demonstrated that GCN2 loss of function negatively regulates BMP (bone morphogenetic protein)-dependent SMAD1/5/9 signaling. Exogenous BMP9 was still able to reverse GCN2 inhibition-induced proliferation of pulmonary artery endothelial cells. In conclusion, we identified CHOP and HO-1 inhibition, and BMP9, as potential therapeutic options for PVOD.


Asunto(s)
Enfermedad Veno-Oclusiva Pulmonar/metabolismo , Enfermedad Veno-Oclusiva Pulmonar/patología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Células Endoteliales/patología , Humanos , Hipertensión Pulmonar/metabolismo , Hipertensión Pulmonar/patología , Pulmón/metabolismo , Pulmón/patología , Mutación/genética , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ratas , Transducción de Señal/fisiología , Factor de Transcripción CHOP/metabolismo
14.
Circulation ; 139(7): 932-948, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30586714

RESUMEN

BACKGROUND: Monoallelic mutations in the gene encoding bone morphogenetic protein receptor 2 ( Bmpr2) are the main genetic risk factor for heritable pulmonary arterial hypertension (PAH) with incomplete penetrance. Several Bmpr2 transgenic mice have been reported to develop mild spontaneous PAH. In this study, we examined whether rats with the Bmpr2 mutation were susceptible to developing more severe PAH. METHODS: The zinc finger nuclease method was used to establish rat lines with mutations in the Bmpr2 gene. These rats were then characterized at the hemodynamic, histological, electrophysiological, and molecular levels. RESULTS: Rats with a monoallelic deletion of 71 bp in exon 1 (Δ 71 rats) showed decreased BMPRII expression and phosphorylated SMAD1/5/9 levels. Δ 71 Rats develop age-dependent spontaneous PAH with a low penetrance (16%-27%), similar to that in humans. Δ 71 Rats were more susceptible to hypoxia-induced pulmonary hypertension than wild-type rats. Δ 71 Rats exhibited progressive pulmonary vascular remodeling associated with a proproliferative phenotype and showed lower pulmonary microvascular density than wild-type rats. Organ bath studies revealed severe alteration of pulmonary artery contraction and relaxation associated with potassium channel subfamily K member 3 (KCNK3) dysfunction. High levels of perivascular fibrillar collagen and pulmonary interleukin-6 overexpression discriminated rats that developed spontaneous PAH and rats that did not develop spontaneous PAH. Finally, detailed assessments of cardiomyocytes demonstrated alterations in morphology, calcium (Ca2+), and cell contractility specific to the right ventricle; these changes could explain the lower cardiac output of Δ 71 rats. Indeed, adult right ventricular cardiomyocytes from Δ 71 rats exhibited a smaller diameter, decreased sensitivity of sarcomeres to Ca2+, decreased [Ca2+] transient amplitude, reduced sarcoplasmic reticulum Ca2+ content, and short action potential duration compared with right ventricular cardiomyocytes from wild-type rats. CONCLUSIONS: We characterized the first Bmpr2 mutant rats and showed some of the critical cellular and molecular dysfunctions described in human PAH. We also identified the heart as an unexpected but potential target organ of Bmpr2 mutations. Thus, this new genetic rat model represents a promising tool to study the pathogenesis of PAH.


Asunto(s)
Presión Arterial/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Hipertensión Pulmonar/genética , Hipertensión Pulmonar/fisiopatología , Mutación , Contracción Miocárdica/genética , Arteria Pulmonar/fisiopatología , Función Ventricular Derecha/genética , Potenciales de Acción , Animales , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Señalización del Calcio , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Hipertensión Pulmonar/metabolismo , Hipoxia/complicaciones , Miocitos Cardíacos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Fenotipo , Fosforilación , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Arteria Pulmonar/metabolismo , Ratas Mutantes , Proteínas Smad/metabolismo
15.
Respir Res ; 21(1): 186, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678044

RESUMEN

BACKGROUND: The pathogenesis of pulmonary arterial hypertension (PAH) involves many signalling pathways. MicroRNAs are potential candidates involved in simultaneously coordinating multiple genes under such multifactorial conditions. METHODS AND RESULTS: MiR-138-5p is overexpressed in pulmonary arterial smooth muscle cells (PASMCs) from PAH patients and in lungs from rats with monocrotaline-induced pulmonary hypertension (MCT-PH). MiR-138-5p is predicted to regulate the expression of the potassium channel KCNK3, whose loss is associated with the development and progression of PAH. We hypothesized that, in vivo, miR-138-5p inhibition would restore KCNK3 lung expression and subsequently alleviate PAH. Nebulization-based delivery of anti-miR-138-5p to rats with established MCT-PH significantly reduced the right ventricular systolic pressure and significantly improved the pulmonary arterial acceleration time (PAAT). These haemodynamic improvements were related to decrease pulmonary vascular remodelling, lung inflammation and pulmonary vascular cell proliferation in situ. In vivo inhibition of miR-138-5p restored KCNK3 mRNA expression and SLC45A3 protein expression in the lungs. CONCLUSIONS: We confirmed that in vivo inhibition of miR-138-5p reduces the development of PH in experimental MCT-PH. The possible curative mechanisms involve at least the normalization of lung KCNK3 as well as SLC45A3 expression.


Asunto(s)
Antagomirs/administración & dosificación , Presión Arterial , MicroARNs/antagonistas & inhibidores , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Hipertensión Arterial Pulmonar/prevención & control , Arteria Pulmonar/metabolismo , Administración por Inhalación , Animales , Antagomirs/genética , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Humanos , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Monocrotalina , Proteínas de Transporte de Monosacáridos/genética , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Hipertensión Arterial Pulmonar/genética , Hipertensión Arterial Pulmonar/metabolismo , Hipertensión Arterial Pulmonar/fisiopatología , Arteria Pulmonar/fisiopatología , Ratas Wistar , Transducción de Señal , Remodelación Vascular
16.
Int J Mol Sci ; 21(19)2020 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-33036472

RESUMEN

The physiopathology of pulmonary arterial hypertension (PAH) is characterized by pulmonary artery smooth muscle cell (PASMC) and endothelial cell (PAEC) dysfunction, contributing to pulmonary arterial obstruction and PAH progression. KCNK3 loss of function mutations are responsible for the first channelopathy identified in PAH. Loss of KCNK3 function/expression is a hallmark of PAH. However, the molecular mechanisms involved in KCNK3 dysfunction are mostly unknown. To identify the pathological molecular mechanisms downstream of KCNK3 in human PASMCs (hPASMCs) and human PAECs (hPAECs), we used a Liquid Chromatography-Tandem Mass Spectrometry-based proteomic approach to identify the molecular pathways regulated by KCNK3. KCNK3 loss of expression was induced in control hPASMCs or hPAECs by specific siRNA targeting KCNK3. We found that the loss of KCNK3 expression in hPAECs and hPASMCs leads to 326 and 222 proteins differentially expressed, respectively. Among them, 53 proteins were common to hPAECs and hPASMCs. The specific proteome remodeling in hPAECs in absence of KCNK3 was mostly related to the activation of glycolysis, the superpathway of methionine degradation, and the mTOR signaling pathways, and to a reduction in EIF2 signaling pathways. In hPASMCs, we found an activation of the PI3K/AKT signaling pathways and a reduction in EIF2 signaling and the Purine Nucleotides De Novo Biosynthesis II and IL-8 signaling pathways. Common to hPAECs and hPASMCs, we found that the loss of KCNK3 expression leads to the activation of the NRF2-mediated oxidative stress response and a reduction in the interferon pathway. In the hPAECs and hPASMCs, we found an increased expression of HO-1 (heme oxygenase-1) and a decreased IFIT3 (interferon-induced proteins with tetratricopeptide repeats 3) (confirmed by Western blotting), allowing us to identify these axes to understand the consequences of KCNK3 dysfunction. Our experiments, based on the loss of KCNK3 expression by a specific siRNA strategy in control hPAECs and hPASMCs, allow us to identify differences in the activation of several signaling pathways, indicating the key role played by KCNK3 dysfunction in the development of PAH. Altogether, these results allow us to better understand the consequences of KCNK3 dysfunction and suggest that KCNK3 loss of expression acts in favor of the proliferation and migration of hPASMCs and promotes the metabolic shift and apoptosis resistance of hPAECs.


Asunto(s)
Células Endoteliales/metabolismo , Miocitos del Músculo Liso/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Proteoma , Proteómica , Arteria Pulmonar , Transducción de Señal , Biomarcadores , Células Cultivadas , Biología Computacional/métodos , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Anotación de Secuencia Molecular , Proteínas del Tejido Nervioso/genética , Canales de Potasio de Dominio Poro en Tándem/genética , Proteómica/métodos , Arteria Pulmonar/citología , Arteria Pulmonar/metabolismo
19.
Circulation ; 137(22): 2371-2389, 2018 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-29444988

RESUMEN

BACKGROUND: Excessive proliferation and apoptosis resistance in pulmonary vascular cells underlie vascular remodeling in pulmonary arterial hypertension (PAH). Specific treatments for PAH exist, mostly targeting endothelial dysfunction, but high pulmonary arterial pressure still causes heart failure and death. Pulmonary vascular remodeling may be driven by metabolic reprogramming of vascular cells to increase glutaminolysis and glutamate production. The N-methyl-d-aspartate receptor (NMDAR), a major neuronal glutamate receptor, is also expressed on vascular cells, but its role in PAH is unknown. METHODS: We assessed the status of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and controls through mass spectrometry imaging, Western blotting, and immunohistochemistry. We measured the glutamate release from cultured pulmonary vascular cells using enzymatic assays and analyzed NMDAR regulation/phosphorylation through Western blot experiments. The effect of NMDAR blockade on human pulmonary arterial smooth muscle cell proliferation was determined using a BrdU incorporation assay. We assessed the role of NMDARs in vascular remodeling associated to pulmonary hypertension, in both smooth muscle-specific NMDAR knockout mice exposed to chronic hypoxia and the monocrotaline rat model of pulmonary hypertension using NMDAR blockers. RESULTS: We report glutamate accumulation, upregulation of the NMDAR, and NMDAR engagement reflected by increases in GluN1-subunit phosphorylation in the pulmonary arteries of human patients with PAH. Kv channel inhibition and type A-selective endothelin receptor activation amplified calcium-dependent glutamate release from human pulmonary arterial smooth muscle cell, and type A-selective endothelin receptor and platelet-derived growth factor receptor activation led to NMDAR engagement, highlighting crosstalk between the glutamate-NMDAR axis and major PAH-associated pathways. The platelet-derived growth factor-BB-induced proliferation of human pulmonary arterial smooth muscle cells involved NMDAR activation and phosphorylated GluN1 subunit localization to cell-cell contacts, consistent with glutamatergic communication between proliferating human pulmonary arterial smooth muscle cells via NMDARs. Smooth-muscle NMDAR deficiency in mice attenuated the vascular remodeling triggered by chronic hypoxia, highlighting the role of vascular NMDARs in pulmonary hypertension. Pharmacological NMDAR blockade in the monocrotaline rat model of pulmonary hypertension had beneficial effects on cardiac and vascular remodeling, decreasing endothelial dysfunction, cell proliferation, and apoptosis resistance while disrupting the glutamate-NMDAR pathway in pulmonary arteries. CONCLUSIONS: These results reveal a dysregulation of the glutamate-NMDAR axis in the pulmonary arteries of patients with PAH and identify vascular NMDARs as targets for antiremodeling treatments in PAH.


Asunto(s)
Ácido Glutámico/metabolismo , Hipertensión Pulmonar/patología , Receptores de N-Metil-D-Aspartato/metabolismo , Remodelación Vascular , Animales , Apoptosis/efectos de los fármacos , Calcio/farmacología , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Maleato de Dizocilpina/farmacología , Endotelina-1/farmacología , Humanos , Hipertensión Pulmonar/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Noqueados , Músculo Liso Vascular/citología , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Canales de Potasio con Entrada de Voltaje/metabolismo , Ratas , Receptores de Endotelina/química , Receptores de Endotelina/metabolismo , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/genética , Transducción de Señal/efectos de los fármacos , Remodelación Vascular/efectos de los fármacos
20.
Am J Physiol Lung Cell Mol Physiol ; 316(3): L445-L455, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30543306

RESUMEN

In this study, we explored the complex interactions between platelet-derived growth factor (PDGF) and N-methyl-d-aspartate receptor (NMDAR) and their effect on the excessive proliferation and migration of smooth muscle cells leading to obstructed arteries in pulmonary arterial hypertension (PAH). We report lower expression of glutamate receptor NMDA-type subunit 2B (GluN2B), a subunit composing NMDARs expected to affect cell survival/proliferation of pulmonary artery smooth muscle cells (PASMCs), in PAH patient lungs. PASMC exposure to PDGF-BB stimulated immediate increased levels of phosphorylated Src family kinases (SFKs) together with increased phosphorylated GluN2B (its active form) and cell surface relocalization, suggesting a cross talk between PDGFR-recruited SFKs and NMDAR. Selective inhibition of PDGFR-ß or SFKs with imatinib or A-419259, respectively, on one hand, or with specific small-interfering RNAs (siRNAs) on the other hand, aborted PDGF-induced phosphorylation of GluN2B, thus validating the pathway. Selective inhibition of GluN2B using Rö25-6981 and silencing with specific siRNA, in the presence of PDGF-BB, significantly increased both migration and proliferation of PASMCs, thus strengthening the functional importance of the pathway. Together, these results indicate that GluN2B-type NMDAR activation may confer to PASMCs antiproliferative and antimigratory properties. The decreased levels of GluN2B observed in PAH pulmonary arteries could mediate the excessive proliferation of PASMCs, thus contributing to medial hyperplasia and PAH development.


Asunto(s)
Miocitos del Músculo Liso/metabolismo , Hipertensión Arterial Pulmonar/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Adulto , Anciano , Hipertensión Pulmonar Primaria Familiar/metabolismo , Humanos , Hipertensión Pulmonar/metabolismo , Persona de Mediana Edad , Músculo Liso Vascular/metabolismo , Arteria Pulmonar/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda