Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Pharm Pharmacol ; 74(3): 446-457, 2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-34850064

RESUMEN

OBJECTIVES: This study aimed to evaluate endophytic fungi isolated from Tocoyena bullata and Humiria balsamifera plant species for their antimycobacterial and anti-inflammatory activities, focusing on severe pulmonary tuberculosis cases which are often associated with exacerbated inflammation. METHODS: Mycobacterium suspensions were incubated with the samples for 5 days. RAW 264.7 macrophages stimulated with LPS were also incubated with them for 24 h to assess the inhibition of inflammatory mediator production and cytotoxicity. C57BL/6 mice were infected with Mtb M299 and treated for 15 days with lasiodiplodin (Lasio). KEY FINDINGS: Endophytic fungus Sordaria tamaensis, obtained from T. bullata, was the most promising. Its ethanolic extract impaired mycobacterial growth with MIC50 (µg/ml): 1.5 ± 0.6 (BCG), 66.8 ± 0.1 (H37Rv) and 80.0 ± 0.1 (M299). (R)-(+)-Lasio showed MIC50 92.2 ± 1.8 µg/ml (M299). In addition, Lasio was able to inhibit NO, IL-1ß and TNF-α production and was not cytotoxic for macrophages. M. tuberculosis-infected C57BL/6 animals treated by Lasio reduced the number of acid-fast bacilli, lung pathology, leucocyte influx and proinflammatory cytokine production in the lungs. The class IIa fructose 1,6-bisphosphate aldolase was the predicted hypothetical target of Lasio. CONCLUSIONS: (R)-(+)-Lasio stood out as a promising anti-TB compound, exhibiting anti-inflammatory and antimycobacterial effects, as well as low cytotoxicity.


Asunto(s)
Antiinflamatorios/farmacología , Antituberculosos/farmacología , Sordariales/química , Zearalenona/análogos & derivados , Animales , Antiinflamatorios/aislamiento & purificación , Antituberculosos/aislamiento & purificación , Células CACO-2 , Humanos , Inflamación/tratamiento farmacológico , Lipopolisacáridos , Macrófagos/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Mycobacterium tuberculosis/efectos de los fármacos , Células RAW 264.7 , Rubiaceae/microbiología , Sordariales/aislamiento & purificación , Tuberculosis Pulmonar/tratamiento farmacológico , Tuberculosis Pulmonar/microbiología , Zearalenona/aislamiento & purificación , Zearalenona/farmacología
2.
Comput Biol Med ; 136: 104694, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34365277

RESUMEN

Mycobacterium tuberculosis was discovered in 1882 by Robert Koch but, since its discovery, the tuberculosis (TB) epidemic has endured, being one of the top 10 causes of death worldwide. Drug-resistant TB continues to be a public health threat and bioactive compounds with a new mode of action (MoA) are needed to overcome this. Since natural products are described as important sources for the development of new drugs, the objective of this work was to identify potential ligands from Brazilian natural products (NPs) for M. tuberculosis targets using molecular modeling tools. Using chemogenomics we identified the Serine/Threonine Protein Kinase PknB as a putative target for 13 NPs from a database from Brazilian biodiversity (NuBBE). Literature data supported further investigation of NuBBE105, NuBBE598, NuBBE936, NuBBE964, NuBBE1045, and NuBBE1180 by molecular docking and dynamics. Key interactions were observed with PknB and simulations confirmed stability and favorable binding energies. Considering structural similarity with PknB, we further explored binding of the NPs to PknA, critical for M. tuberculosis survival, and all of them resembled important interactions with the enzyme, showing stable and favorable binding energies, whilst van der Waals interactions seem to play a key role for binding to PknA and PknB. NuBBE936 and NuBBE1180 have already had their antimycobacterial activity reported and our results can provide a basis for their MoA. Finally, the other NPs which have not been tested against M. tuberculosis deserve further investigation, aiming at the discovery of antimycobacterial drug candidates with innovative MoA.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Productos Biológicos , Mycobacterium tuberculosis , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Tuberculosis , Antituberculosos/farmacología , Biodiversidad , Productos Biológicos/farmacología , Humanos , Simulación del Acoplamiento Molecular , Tuberculosis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda