Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nat Rev Neurosci ; 24(3): 173-189, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36456807

RESUMEN

The posterior cingulate cortex (PCC) is one of the least understood regions of the cerebral cortex. By contrast, the anterior cingulate cortex has been the subject of intensive investigation in humans and model animal systems, leading to detailed behavioural and computational theoretical accounts of its function. The time is right for similar progress to be made in the PCC given its unique anatomical and physiological properties and demonstrably important contributions to higher cognitive functions and brain diseases. Here, we describe recent progress in understanding the PCC, with a focus on convergent findings across species and techniques that lay a foundation for establishing a formal theoretical account of its functions. Based on this converging evidence, we propose that the broader PCC region contains three major subregions - the dorsal PCC, ventral PCC and retrosplenial cortex - that respectively support the integration of executive, mnemonic and spatial processing systems. This tripartite subregional view reconciles inconsistencies in prior unitary theories of PCC function and offers promising new avenues for progress.


Asunto(s)
Corteza Cerebral , Giro del Cíngulo , Animales , Humanos , Giro del Cíngulo/fisiología , Corteza Cerebral/fisiología , Cognición/fisiología , Memoria , Imagen por Resonancia Magnética/métodos
2.
Sci Adv ; 8(36): eabn9516, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36070384

RESUMEN

Understanding brain structure-function relationships, and their development and evolution, is central to neuroscience research. Here, we show that morphological differences in posterior cingulate cortex (PCC), a hub of functional brain networks, predict individual differences in macroanatomical, microstructural, and functional features of PCC. Manually labeling 4511 sulci in 572 hemispheres, we found a shallow cortical indentation (termed the inframarginal sulcus; ifrms) within PCC that is absent from neuroanatomical atlases yet colocalized with a focal, functional region of the lateral frontoparietal network implicated in cognitive control. This structural-functional coupling generalized to meta-analyses consisting of hundreds of studies and thousands of participants. Additional morphological analyses showed that unique properties of the ifrms differ across the life span and between hominoid species. These findings support a classic theory that shallow, tertiary sulci serve as landmarks in association cortices. They also beg the question: How many other cortical indentations have we missed?

3.
Elife ; 112022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36169132

RESUMEN

Posterior cingulate cortex (PCC) is an enigmatic region implicated in psychiatric and neurological disease, yet its role in cognition remains unclear. Human studies link PCC to episodic memory and default mode network (DMN), while findings from the non-human primate emphasize executive processes more associated with the cognitive control network (CCN) in humans. We hypothesized this difference reflects an important functional division between dorsal (executive) and ventral (episodic) PCC. To test this, we utilized human intracranial recordings of population and single unit activity targeting dorsal PCC during an alternated executive/episodic processing task. Dorsal PCC population responses were significantly enhanced for executive, compared to episodic, task conditions, consistent with the CCN. Single unit recordings, however, revealed four distinct functional types with unique executive (CCN) or episodic (DMN) response profiles. Our findings provide critical electrophysiological data from human PCC, bridging incongruent views within and across species, furthering our understanding of PCC function.


Asunto(s)
Giro del Cíngulo , Memoria Episódica , Encéfalo/fisiología , Mapeo Encefálico , Cognición/fisiología , Giro del Cíngulo/fisiología , Humanos , Imagen por Resonancia Magnética , Neuronas
4.
Cell Rep ; 35(13): 109304, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34192546

RESUMEN

High-frequency activity bursts in the hippocampus, known as ripples, are thought to support memory consolidation during "offline" states, such as sleep. Recently, human hippocampal ripples have been observed during "online" episodic memory tasks. It remains unclear whether similar ripple activity occurs during other cognitive states, including different types of episodic memory. However, identifying genuine ripple events in the human hippocampus is challenging. To address these questions, spectro-temporal ripple identification was applied to human hippocampal recordings across a variety of cognitive tasks. Overall, ripple attributes were stable across tasks of visual perception and associative memory, with mean rates lower than offline states of rest and sleep. In contrast, while more complex visual attention tasks did not modulate ripple attributes, rates were enhanced for more complex autobiographical memory conditions. Therefore, hippocampal ripples reliably occur across cognitive states but are specifically enhanced during offline states and complex memory processes, consistent with a role in consolidation.


Asunto(s)
Potenciales de Acción/fisiología , Hipocampo/fisiología , Análisis y Desempeño de Tareas , Adulto , Artefactos , Cognición/fisiología , Electrodos , Femenino , Humanos , Masculino , Memoria Episódica , Persona de Mediana Edad , Sueño/fisiología , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda