Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Exp Parasitol ; 256: 108657, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38043764

RESUMEN

Aedes aegypti serves as the primary vector for viruses like dengue, Chikungunya, Zika, and yellow fever, posing a significant public health challenge in Brazil. Given the absence of approved vaccines for these diseases, effective mosquito control becomes paramount in preventing outbreaks. However, currently available chemical insecticides face issues related to toxicity and the emergence of resistance, necessitating the exploration of new active compounds. Drawing inspiration from natural products, we identified the 1,3-benzodioxole group as a key pharmacophore associated with insecticidal activity. Therefore, this study aimed to synthesize and assess the larvicidal activity of 1,3-benzodioxole acids against Ae. aegypti, as well as their toxicity in mammals. Among the compounds evaluated, 3,4-(methylenedioxy) cinnamic acid (compound 4) demonstrated larvicidal activity. It exhibited LC50 and LC90 values of 28.9 ± 5.6 and 162.7 ± 26.2 µM, respectively, after 24 h of exposure. For reference, the positive control, temephos, displayed both LC50 and LC90 values below 10.94 µM. These findings underline the significance of the 3,4-methylenedioxy substituent on the aromatic ring and the presence of a double bond in the aliphatic chain for biological activity. Furthermore, compound 4 exhibited no cytotoxicity towards human peripheral blood mononuclear cells, even at concentrations up to 5200 µM. Lastly, in mice treated with 2000 mg kg-1, compound 4 showed mild behavioral effects and displayed no structural signs of toxicity in vital organs such as the kidney, liver, spleen, and lungs.


Asunto(s)
Aedes , Insecticidas , Infección por el Virus Zika , Virus Zika , Humanos , Animales , Ratones , Larva , Leucocitos Mononucleares , Mosquitos Vectores , Extractos Vegetales/farmacología , Insecticidas/farmacología , Insecticidas/química , Mamíferos
2.
Molecules ; 22(9)2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28867762

RESUMEN

Guanylhydrazones are molecules with great pharmacological potential in various therapeutic areas, including antitumoral activity. Factorial design is an excellent tool in the optimization of a chromatographic method, because it is possible quickly change factors such as temperature, mobile phase composition, mobile phase pH, column length, among others to establish the optimal conditions of analysis. The aim of the present work was to develop and validate a HPLC and UHPLC methods for the simultaneous determination of guanylhydrazones with anticancer activity employing experimental design. Precise, exact, linear and robust HPLC and UHPLC methods were developed and validated for the simultaneous quantification of the guanylhydrazones LQM10, LQM14, and LQM17. The UHPLC method was more economic, with a four times less solvent consumption, and 20 times less injection volume, what allowed better column performance. Comparing the empirical approach employed in the HPLC method development to the DoE approach employed in the UHPLC method development, we can conclude that the factorial design made the method development faster, more practical and rational. This resulted in methods that can be employed in the analysis, evaluation and quality control of these new synthetic guanylhydrazones.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Hidrazonas/análisis , Hidrazonas/química , Límite de Detección , Peso Molecular
3.
AAPS PharmSciTech ; 18(1): 49-57, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27073031

RESUMEN

This study evaluated three different methods for the formation of an inclusion complex between alpha- and beta-cyclodextrin (α- and ß-CD) and limonene (LIM) with the goal of improving the physicochemical properties of limonene. The study samples were prepared through physical mixing (PM), paste complexation (PC), and slurry complexation (SC) methods in the molar ratio of 1:1 (cyclodextrin:limonene). The complexes prepared were evaluated with thermogravimetry/derivate thermogravimetry, infrared spectroscopy, X-ray diffraction, complexation efficiency through gas chromatography/mass spectrometry analyses, molecular modeling, and nuclear magnetic resonance. The results showed that the physical mixing procedure did not produce complexation, but the paste and slurry methods produced inclusion complexes, which demonstrated interactions outside of the cavity of the CDs. However, the paste obtained with ß-cyclodextrin did not demonstrate complexation in the gas chromatographic technique because, after extraction, most of the limonene was either surface-adsorbed by ß-cyclodextrin or volatilized during the procedure. We conclude that paste complexation and slurry complexation are effective and economic methods to improve the physicochemical character of limonene and could have important applications in pharmacological activities in terms of an increase in solubility.


Asunto(s)
Ciclohexenos/química , Terpenos/química , alfa-Ciclodextrinas/química , beta-Ciclodextrinas/química , Cromatografía de Gases/métodos , Limoneno , Espectroscopía de Resonancia Magnética/métodos , Espectrometría de Masas/métodos , Modelos Moleculares , Solubilidad , Espectrofotometría Infrarroja/métodos , Termogravimetría/métodos , Difracción de Rayos X/métodos
4.
Curr Neuropharmacol ; 22(7): 1169-1188, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38708921

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease that causes the death of motor neurons and consequent muscle paralysis. Despite many efforts to address it, current therapy targeting ALS remains limited, increasing the interest in complementary therapies. Over the years, several herbal preparations and medicinal plants have been studied to prevent and treat this disease, which has received remarkable attention due to their blood-brain barrier penetration properties and low toxicity. Thus, this review presents the therapeutic potential of a variety of medicinal herbs and their relationship with ALS and their physiopathological pathways.


Asunto(s)
Esclerosis Amiotrófica Lateral , Productos Biológicos , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Humanos , Productos Biológicos/uso terapéutico , Productos Biológicos/farmacología , Animales , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/farmacología , Plantas Medicinales/química
5.
Environ Toxicol Pharmacol ; 106: 104361, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38211665

RESUMEN

Thimerosal, a preservative commonly used in the pharmaceutical and cosmetic industry, has raised concerns regarding its potentially toxic effects as an organic mercury compound. Within this context, using an NMR-based metabolomics profile and chemometric analysis, zebrafish embryos were used as an in vivo model to study the effects of thimerosal in metabolic profiles after exposure to sublethal concentrations of the mercury compound. The thimerosal concentrations of 40 and 80 nM were employed, corresponding to 40% and 80% of the LC50, respectively, for zebrafish embryos. The most significant alterations in the metabolic profile included changes in carbohydrates, amino acids, nucleotides, trimethylamine-N-oxide, ethanolamine, betaine, and ethanol. Furthermore, thimerosal exposure affects various metabolic pathways, impairing the nervous system, disrupting protein metabolism, and potentially causing oxidative damage. Therefore, adopting a metabolomics approach in this investigation provided insights into the potentially implicated metabolic pathways contributing to the deleterious effects of thimerosal in biological systems.


Asunto(s)
Mercurio , Pez Cebra , Animales , Timerosal/toxicidad , Metabolómica , Aminoácidos
6.
Fundam Clin Pharmacol ; 38(1): 84-98, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37649138

RESUMEN

BACKGROUND: Thiadiazines are heterocyclic compounds that contain two nitrogen atoms and one sulfur atom in their structure. These synthetic molecules have several relevant pharmacological activities, such as antifungal, antibacterial, and antiparasitic. OBJECTIVES: The present study aimed to evaluate the possible in vitro and in silico interactions of compounds derived from thiadiazines. METHODS: The compounds were initially synthesized, purified, and confirmed through HPLC methodology. Multi-drug resistant bacterial strains of Staphylococcus aureus 10 and Pseudomonas aeruginosa 24 were used to evaluate the direct and modifying antibiotic activity of thiadiazine derivatives. ADMET assays (absorption, distribution, metabolism, excretion, and toxicity) were conducted, which evaluated the influence of the compounds against thousands of macromolecules considered as bioactive targets. RESULTS: There were modifications in the chemical synthesis in carbon 4 or 3 in one of the aromatic rings of the structure where different ions were added, ensuring a variability of products. It was possible to observe results that indicate the possibility of these compounds acting through the cyclooxygenase 2 mechanism, which, in addition to being involved in inflammatory responses, also acts by helping sodium reabsorption. The amine group present in thiadiazine analogs confers hydrophilic characteristics to the substances, but this primary characteristic has been altered due to alterations and insertions of other ligands. The characteristics of the analogs generally allow easy intestinal absorption, reduce possible hepatic toxic effects, and enable possible neurological and anti-inflammatory action. The antibacterial activity tests showed a slight direct action, mainly of the IJ23 analog. Some compounds were able to modify the action of the antibiotics gentamicin and norfloxacin against multi-drug resistant strains, indicating a possible synergistic action. CONCLUSIONS: Among all the results obtained in the study, the relevance of thiadiazine analogs as possible coadjuvant drugs in the antibacterial, anti-inflammatory, and neurological action with low toxicity is clear. Need for further studies to verify these effects in living organisms is not ruled out.


Asunto(s)
Antiinfecciosos , Tiadiazinas , Antibacterianos/farmacología , Tiadiazinas/farmacología , Tiadiazinas/química , Norfloxacino/farmacología , Antiinflamatorios , Pruebas de Sensibilidad Microbiana
7.
Artículo en Inglés | MEDLINE | ID: mdl-38018200

RESUMEN

Neurodegenerative conditions like Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS) encompass disorders characterized by the degeneration of neurons in specific circumstances. The quest for novel agents to influence these diseases, particularly AD, has unearthed various natural compounds displaying multifaceted activities and diverse pharmacological mechanisms. Given the ongoing extensive study of pathways associated with the accumulation of neurofibrillary aggregates and amyloid plaques, this paper aims to comprehensively review around 130 studies exploring natural products. These studies focus on inhibiting the formation of amyloid plaques and tau protein tangles, with the objective of potentially alleviating or delaying AD.

8.
Curr Alzheimer Res ; 20(3): 131-148, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37309767

RESUMEN

The accumulation of amyloid-ß (Aß) is the main event related to Alzheimer's disease (AD) progression. Over the years, several disease-modulating approaches have been reported, but without clinical success. The amyloid cascade hypothesis evolved and proposed essential targets such as tau protein aggregation and modulation of ß-secretase (ß-site amyloid precursor protein cleaving enzyme 1 - BACE-1) and γ-secretase proteases. BACE-1 cuts the amyloid precursor protein (APP) to release the C99 fragment, giving rise to several Aß peptide species during the subsequent γ-secretase cleavage. In this way, BACE-1 has emerged as a clinically validated and attractive target in medicinal chemistry, as it plays a crucial role in the rate of Aß generation. In this review, we report the main results of candidates in clinical trials such as E2609, MK8931, and AZD-3293, in addition to highlighting the pharmacokinetic and pharmacodynamic-related effects of the inhibitors already reported. The current status of developing new peptidomimetic, non-peptidomimetic, naturally occurring, and other class inhibitors are demonstrated, considering their main limitations and lessons learned. The goal is to provide a broad and complete approach to the subject, exploring new chemical classes and perspectives.


Asunto(s)
Enfermedad de Alzheimer , Secretasas de la Proteína Precursora del Amiloide , Humanos , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Péptidos beta-Amiloides/metabolismo , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
9.
Biophys Chem ; 299: 107042, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37263179

RESUMEN

Ureases are enzymes produced by fungi, plants, and bacteria associated with agricultural and clinical problems. The urea hydrolysis in NH3 and CO2 leads to the loss of N-urea fertilizers in soils and changes the human stomach microenvironment, favoring the colonization of H. pylori. In this sense, it is necessary to evaluate potential enzyme inhibitors to mitigate the effects of their activities and respond to scientific and market demands to produce fertilizers with enhanced efficiency. Thus, biophysical and theoretical studies were carried out to evaluate the influence of the N-alkyl chain in benzoyl-thiourea derivatives on urease enzyme inhibition. A screening based on IC50, binding constants, and theoretical studies demonstrated that BTU1 without the N-alkyl chain (R = H) was more active than other compounds, so the magnitude of the interaction was determined as BTU1 > BTU2 > BTU3 > BTU4 > BTU5, corresponding to progressively increased chain length. Thus, BTU1 was selected for interaction and soil application essays. The binding constants (Kb) for the supramolecular urease-BTU1 complex ranged from 7.95 to 5.71 × 103 M-1 at different temperatures (22, 30, and 38 °C), indicating that the preferential forces responsible for the stabilization of the complex are hydrogen bonds and van der Waals forces (ΔH = -15.84 kJ mol-1 and ΔS = -36.61 J mol-1 K-1). Theoretical and experimental results (thermodynamics, synchronous fluorescence, and competition assay) agree and indicate that BTU1 is a mixed inhibitor. Finally, urease inhibition was evaluated in the four soil samples, where BTU1 was as efficient as NBPT (based on ANOVA two-way and Tukey test with 95% confidence), with an average inhibition of 20% of urease activity. Thus, the biophysics and theoretical studies are strategies for evaluating potential inhibitors and showed that increasing the N-alkyl chain in benzoyl-thiourea derivatives did not favor urease inhibition.


Asunto(s)
Helicobacter pylori , Suelo , Humanos , Ureasa/química , Ureasa/metabolismo , Fertilizantes/análisis , Urea/química , Helicobacter pylori/metabolismo , Inhibidores Enzimáticos/farmacología , Tiourea , Biofisica
10.
Sci Total Environ ; 868: 161737, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-36693575

RESUMEN

Metabolomics is an innovative approach used in the medical, toxicological, and biological sciences. As an interdisciplinary topic, metabolomics and its relation with the environment and toxicological research are extensive. The use of substances, such as drugs and pesticides, contributes to the continuous releasing of xenobiotics into the environment, harming organisms and their habitats. In this context, fish are important bioindicators of the environmental condition and have often been used as model species. Among them, zebrafish (Danio rerio) presents itself as a versatile and straightforward option due to its unique attributes for research. Zebrafish proves to be a valuable model for toxicity assays and also for metabolomics profiling by analytical tools. Thus, NMR-based metabolomics associated with statistical analysis can reasonably assist researchers in critical factors related to discovering and validating biomarkers through accurate diagnosis. Therefore, this review aimed to report the studies that applied zebrafish as a model for (eco)toxicological assays and essentially utilized NMR-based metabolomics analysis to assess the biochemical profile and thus suggest the potential biological marker.


Asunto(s)
Plaguicidas , Pez Cebra , Animales , Pez Cebra/metabolismo , Ecotoxicología , Metabolómica , Espectroscopía de Resonancia Magnética , Plaguicidas/metabolismo
11.
Naunyn Schmiedebergs Arch Pharmacol ; 396(11): 2957-2975, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37097335

RESUMEN

Trimetozine is used to be indicated for the treatment of mental illnesses, particularly anxiety. The present study provides data on the pharmacological profile of trimetozine derivative morpholine (3,5-di-tert-butyl-4-hydroxyphenyl) methanone (LQFM289) which was designed from molecular hybridization of trimetozine lead compound and 2,6-di-tert-butyl-hydroxytoluene to develop new anxiolytic drugs. Here, we conduct molecular dynamics simulations, docking studies, receptor binding assays, and in silico ADMET profiling of LQFM289 before its behavioral and biochemical assessment in mice within the dose range of 5-20 mg/kg. The docking of LQFM289 showed strong interactions with the benzodiazepine binding sites and matched well with receptor binding data. With the ADMET profile of this trimetozine derivative that predicts a high intestinal absorption and permeability to blood-brain barrier without being inhibited by the permeability glycoprotein, the oral administration of LQFM289 10 mg/kg consistently induced anxiolytic-like behavior of the mice exposed to the open field and light-dark box apparatus without eliciting motor incoordination in the wire, rotarod, and chimney tests. A decrease in the wire and rotarod´s fall latency coupled with an increase in the chimney test´s climbing time and a decrease in the number of crossings in the open field apparatus at the dose of 20 mg/kg of this trimetozine derivative suggest sedative or motor coordination impairment at this highest dose. The attenuation of the anxiolytic-like effects of LQFM289 (10 mg/kg) by flumazenil pretreatment implicates the participation of benzodiazepine binding sites. The lowering of corticosterone and tumor necrosis factor alpha (cytokine) in LQFM289-treated mice at a single oral (acute) dose of 10 mg/kg suggests that the anxiolytic-like effect of this compound also involves the recruitment of non-benzodiazepine binding sites/GABAergic molecular machinery.


Asunto(s)
Ansiolíticos , Ratones , Animales , Ansiolíticos/farmacología , Ansiolíticos/uso terapéutico , Benzodiazepinas/farmacología , Hipnóticos y Sedantes/farmacología , Ansiedad/tratamiento farmacológico , Morfolinas/farmacología , Conducta Animal
12.
Curr Med Chem ; 29(33): 5397-5419, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35301943

RESUMEN

Inflammation is a natural reaction to external stimuli to protect the organism. However, if it is exaggerated, it can cause severe physiopathological damage, linked to diseases like rheumatoid arthritis, cancer, diabetes, allergies, and infections. Inflammation is mainly characterized by pain, increased temperature, flushing, and edema, which can be controlled using anti-inflammatory drugs. In this context, prostaglandin E2 (PGE2) inhibition has been targeted for designing new compounds with anti-inflammatory properties. It is a bioactive lipid overproduced during an inflammatory process, in which its increased production is carried out mainly by COX-1, COX-2, and microsomal prostaglandin E2 synthase-1 (mPGES-1). Recently, studies have demonstrated that mPGES-1 inhibition is a safe strategy for developing anti-inflammatory agents, which could protect against pain, acute inflammation, arthritis, autoimmune diseases, and different types of cancers. Thus, in recent years, computer-aided drug design (CADD) approaches have been increasingly used to design new inhibitors, decreasing costs and increasing the probability of discovering active substances. Finally, this review will cover all aspects involving high-throughput virtual screening, molecular docking, dynamics, fragment-based drug design, and quantitative structure-activity relationship in seeking new promising mPGES-1 inhibitors.


Asunto(s)
Antiinflamatorios , Diseño de Fármacos , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Dinoprostona/uso terapéutico , Humanos , Inflamación/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Prostaglandina-E Sintasas
13.
Curr Drug Targets ; 23(3): 240-259, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34370633

RESUMEN

Since December 2019, the new Coronavirus disease (COVID-19) caused by the etiological agent SARS-CoV-2 has been responsible for several cases worldwide, becoming pandemic in March 2020. Pharmaceutical companies and academics have joined their efforts to discover new therapies to control the disease since there are no specific drugs to combat this emerging virus. Thus, several tar-gets have been explored; among them, the transmembrane protease serine 2 (TMPRSS2) has gained greater interest in the scientific community. In this context, this review will describe the importance of TMPRSS2 protease and the significant advances in virtual screening focused on discovering new inhibitors. In this review, it was observed that molecular modeling methods could be powerful tools in identifying new molecules against SARS-CoV-2. Thus, this review could be used to guide re-searchers worldwide to explore the biological and clinical potential of compounds that could be promising drug candidates against SARS-CoV-2, acting by inhibition of TMPRSS2 protein.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Sistemas de Liberación de Medicamentos , Humanos , Modelos Moleculares , Pandemias , Serina Endopeptidasas
14.
Artículo en Inglés | MEDLINE | ID: mdl-35081900

RESUMEN

BACKGROUND: The organism's defense against aggressive agents is performed by the innate immune system, via activation of pattern-recognition receptors (PRRs). Initially, these agents are recognized by the immune system, resulting in the inflammatory response that activates the pathogen elimination and tissue repair. Inflammasomes are macromolecules related to the host's response to endo or exogenous aggressive agents. Thus, inflammation mediated by inflammasomes plays an important role in the pathogenesis of diseases, such as neurodegenerative disorders, autoimmune diseases, and type 2 diabetes, justifying their attractiveness as drug targets. One of the most important tasks remains in the ATPase nucleotide-binding oligomerization domain nucleotide-binding domain leucine-rich repeat-containing receptors protein 3 (NLRP3), in which the blocking of its oligomerization is related to the functional inhibition of inflammasomes. Here, we performed molecular docking and dynamics simulations for NP3-146, an analog of MCC950, and to obtain information about the complex stability and main interactions with amino acid residues from NLRP3. METHODS: Using the crystalized structure recently deposited in the protein data bank (7alv), molecular docking in GOLD software and Molecular dynamics simulations in GROMACS software were performed, to generate the RMSD, RMSF, Rg, SASA, and H-bond plots. RESULTS: The results of RMSD, RMSF, Rg, SASA, and H-bond plots of both complexes confirmed the stability at the active site. Besides, the analyses of the most stable conformation showed that the main interactions are performed with Ala227, Ala228, Pro352, Ile411, Phe575, and Arg578 residues. CONCLUSION: This report confirmed the stability of NP3-146, similar to the know inhibitor MCC950, and provides various information useful to design NLRP3 inhibitors.

15.
Curr Top Med Chem ; 22(24): 1983-2028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35319372

RESUMEN

The discovery of antibiotics was a revolutionary feat that provided countless health benefits. The identification of penicillin by Alexander Fleming initiated the era of antibiotics, represented by constant discoveries that enabled effective treatments for the different classes of diseases caused by bacteria. However, the indiscriminate use of these drugs allowed the emergence of resistance mechanisms of these microorganisms against the available drugs. In addition, the constant discoveries in the 20th century generated a shortage of new molecules, worrying health agencies and professionals about the appearance of multidrug-resistant strains against available drugs. In this context, the advances of recent years in molecular biology and microbiology have allowed new perspectives in drug design and development, using the findings related to the mechanisms of bacterial resistance to generate new drugs that are not affected by such mechanisms and supply new molecules to be used to treat resistant bacterial infections. Besides, a promising strategy against bacterial resistance is the combination of drugs through adjuvants, providing new expectations in designing new antibiotics and new antimicrobial therapies. Thus, this manuscript will address the main mechanisms of bacterial resistance under the understanding of medicinal chemistry, showing the main active compounds against efflux mechanisms, and also the application of the use of drug delivery systems, and finally, the main potential natural products as adjuvants or with promising activity against resistant strains.


Asunto(s)
Infecciones Bacterianas , Química Farmacéutica , Humanos , Bacterias , Infecciones Bacterianas/tratamiento farmacológico , Infecciones Bacterianas/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Diseño de Fármacos , Farmacorresistencia Bacteriana Múltiple
16.
Int J Biol Macromol ; 219: 224-245, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35926677

RESUMEN

In this work, we investigated in vitro different biological activities of alkaline lignins extracted from the species Buchenavia viridiflora, a tree from the Amazon rainforest used as a wood product. The chemical composition results for the twig and leaves were, respectively (%): cellulose (30.88 and 24. 28), hemicellulose (21.62 and 23.03), lignin (29.93 and 25.46), extractives (13.06 and 20.52), and ash (4.51 and 6.72). The yield was higher for the lignin of the branches (67.9 %) when compared to the leaves (60.2 %). Lignins are of the GSH type, low molecular weight and thermally stable. They promoted moderate to low antioxidant activity, highlighting the lignin of the branches, which presented an IC50 of 884.56 µg/mL for the DPPH assay and an IC50 of 14.08 µg/mL for ABTS. In the cytotoxicity assays, they showed low toxicity against macrophage cells (IC50 28.47 and 22.58 µg/mL). In addition, they were not cytotoxic against splenocytes and erythrocytes at concentrations ranging from 100 to 6.25 µg/mL. These were able to promote splenocyte proliferation and induce the production of anti-inflammatory cytokines. And inhibit the growth of tumor cells with IC50 ranging from 12.63 to values >100 µg/mL and microbial at a concentration of 512 µg/mL. Finally, they showed antiparasitic activity by inhibiting the growth of chloroquine-sensitive and resistant Plasmodium falciparum strains. These findings reinforce that the lignins in this study are promising for potential pharmaceutical and biomedical applications.


Asunto(s)
Antioxidantes , Lignina , Antioxidantes/química , Antioxidantes/farmacología , Antiparasitarios , Cloroquina , Citocinas , Lignina/química , Lignina/farmacología , Preparaciones Farmacéuticas , Extractos Vegetales/farmacología
17.
Pharmaceuticals (Basel) ; 15(1)2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35056161

RESUMEN

A series of coumarin derivatives and isosteres were synthesized from the reaction of triflic intermediates with phenylboronic acids, terminal alkynes, and organozinc compounds through palladium-catalyzed cross-coupling reactions. The in vitro cytotoxic effect of the compounds was evaluated against two non-small cell lung carcinoma (NSCLC) cell lines (A-549 and H2170) and a normal cell line (NIH-3T3) using cisplatin as a reference drug. Additionally, the effects of the most promising coumarin derivative (9f) in reversing the epithelial-to-mesenchymal transition (EMT) in IL-1ß-stimulated A549 cells and in inhibiting the EMT-associated migratory ability in A549 cells were also evaluated. 9f had the greatest cytotoxic effect (CC50 = 7.1 ± 0.8 and 3.3 ± 0.5 µM, respectively against A549 and H2170 cells) and CC50 value of 25.8 µM for NIH-3T3 cells. 9f inhibited the IL-1ß-induced EMT in epithelial cells by inhibiting the F-actin reorganization, attenuating changes in the actin cytoskeleton reorganization, and downregulating vimentin in A549 cells stimulated by IL-1ß. Treatment of A549 cells with 9f at 7 µM for 24 h significantly reduced the migration of IL-1ß-stimulated cells, which is a phenomenon confirmed by qualitative assessment of the wound closure. Taken together, our findings suggest that coumarin derivatives, especially compound 9f, may become a promising candidate for lung cancer therapy, especially in lung cancer promoted by NSCLC cell lines.

18.
Curr Top Med Chem ; 21(21): 1871-1899, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33797369

RESUMEN

Neglected tropical diseases (NTDs) are a group of approximately 20 diseases that affect part of the population in Sub- and Tropical countries. In the past, pharmaceutical industries and governmental agencies have invested in the control, elimination and eradication of such diseases. Among these diseases, Chagas disease (CD) and Human African trypanosomiasis (HAT) are a public health problem, mainly in the countries from the American continent and sub-Saharan African. In this context, the search for new therapeutic alternatives against such diseases has been growing in recent years, presenting cysteine proteases as the main strategy to discover new anti-trypanosomal drugs. Thus, cruzain and rhodesain enzymes are targets widely studied, since the cruzain is present in all stages of the parasite's life, related to the stages of proliferation and differentiation and infection of macrophages; while the rhodesain is related to the immune defense process. In addition, knowledge about the amino acid sequences and availability of X-ray complexes have stimulated the drug searching against these targets, mainly through molecular modeling studies. Thus, this review manuscript will be addressed to cruzain and rhodesain inhibitors developed in the last 10 years, which could provide basis for new lead compounds in the discovery of new trypanocidal drugs. We found 117 studies involving inhibitors of cruzain and rhodesain, being thiosemicarbazones, semicarbazones, N-acylhydrazones, thiazoles-hydrazone, thiazolidinones-hydrazones, oxadiazoles, triazoles, triazines, imidazoles, peptidomimetic, and others. All references were obtained using "cruzain" or "rhodesain" and "inhibitor" as keywords in Science Direct, Bentham Science, PubMed, Espacenet, Springer, ACS Publisher, Wiley, Taylor and Francis, and MDPI (Multidisciplinary Digital Publishing Institute) databases. Finally, we highlighted all these chemical classes of molecules to provide valuable information that could be used to design new inhibitors against Chagas disease and sleeping sickness in the future.


Asunto(s)
Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Cisteína Endopeptidasas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Inhibidores de Cisteína Proteinasa/uso terapéutico , Proteínas Protozoarias/antagonistas & inhibidores , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Animales , Humanos
19.
Curr Med Chem ; 28(15): 2887-2942, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32787752

RESUMEN

BACKGROUND: Viral diseases are responsible for several deaths around the world. Over the past few years, the world has seen several outbreaks caused by viral diseases that, for a long time, seemed to possess no risk. These are diseases that have been forgotten for a long time and, until nowadays, there are no approved drugs or vaccines, leading the pharmaceutical industry and several research groups to run out of time in the search for new pharmacological treatments or prevention methods. In this context, drug repurposing proves to be a fast and economically viable technique, considering the fact that it uses drugs that have a well-established safety profile. Thus, in this review, we present the main advances in drug repurposing and their benefit for searching new treatments against emerging viral diseases. METHODS: We conducted a search in the bibliographic databases (Science Direct, Bentham Science, PubMed, Springer, ACS Publisher, Wiley, and NIH's COVID-19 Portfolio) using the keywords "drug repurposing", "emerging viral infections" and each of the diseases reported here (CoV; ZIKV; DENV; CHIKV; EBOV and MARV) as an inclusion/exclusion criterion. A subjective analysis was performed regarding the quality of the works for inclusion in this manuscript. Thus, the selected works were those that presented drugs repositioned against the emerging viral diseases presented here by means of computational, high-throughput screening or phenotype-based strategies, with no time limit and of relevant scientific value. RESULTS: 291 papers were selected, 24 of which were CHIKV; 52 for ZIKV; 43 for DENV; 35 for EBOV; 10 for MARV; and 56 for CoV and the rest (72 papers) related to the drugs repurposing and emerging viral diseases. Among CoV-related articles, most were published in 2020 (31 papers), updating the current topic. Besides, between the years 2003 - 2005, 10 articles were created, and from 2011 - 2015, there were 7 articles, portraying the outbreaks that occurred at that time. For ZIKV, similar to CoV, most publications were during the period of outbreaks between the years 2016 - 2017 (23 articles). Similarly, most CHIKV (13 papers) and DENV (14 papers) publications occur at the same time interval. For EBOV (13 papers) and MARV (4 papers), they were between the years 2015 - 2016. Through this review, several drugs were highlighted that can be evolved in vivo and clinical trials as possible used against these pathogens showed that remdesivir represent potential treatments against CoV. Furthermore, ribavirin may also be a potential treatment against CHIKV; sofosbuvir against ZIKV; celgosivir against DENV, and favipiravir against EBOV and MARV, representing new hopes against these pathogens. CONCLUSION: The conclusions of this review manuscript show the potential of the drug repurposing strategy in the discovery of new pharmaceutical products, as from this approach, drugs could be used against emerging viral diseases. Thus, this strategy deserves more attention among research groups and is a promising approach to the discovery of new drugs against emerging viral diseases and also other diseases.


Asunto(s)
COVID-19 , Infección por el Virus Zika , Virus Zika , Antivirales/farmacología , Antivirales/uso terapéutico , Reposicionamiento de Medicamentos , Humanos , SARS-CoV-2 , Infección por el Virus Zika/tratamiento farmacológico
20.
Eur J Med Chem ; 224: 113698, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34274831

RESUMEN

Over recent years, many outbreaks caused by (re)emerging RNA viruses have been reported worldwide, including life-threatening Flaviviruses, such as Dengue (DENV) and Zika (ZIKV). Currently, there is only one licensed vaccine against Dengue, Dengvaxia®. However, its administration is not recommended for children under nine years. Still, there are no specific inhibitors available to treat these infectious diseases. Among the flaviviral proteins, NS5 RNA-dependent RNA polymerase (RdRp) is a metalloenzyme essential for viral replication, suggesting that it is a promising macromolecular target since it has no human homolog. Nowadays, several NS5 RdRp inhibitors have been reported, while none inhibitors are currently in clinical development. In this context, this review constitutes a comprehensive work focused on RdRp inhibitors from natural, synthetic, and even repurposing sources. Furthermore, their main aspects associated with the structure-activity relationship (SAR), proposed mechanisms of action, computational studies, and other topics will be discussed in detail.


Asunto(s)
Antivirales/farmacología , Virus del Dengue/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , ARN Polimerasa Dependiente del ARN/antagonistas & inhibidores , Virus Zika/efectos de los fármacos , Antivirales/síntesis química , Antivirales/química , Virus del Dengue/enzimología , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Pruebas de Sensibilidad Microbiana , Estructura Molecular , ARN Polimerasa Dependiente del ARN/metabolismo , Relación Estructura-Actividad , Virus Zika/enzimología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda