Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Acoust Soc Am ; 155(2): 1297-1307, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38349806

RESUMEN

This paper presents a numerical framework for designing diffuse fields in rooms of any shape and size, driven at arbitrary frequencies. That is, we aim at overcoming the Schroeder frequency limit for generating diffuse fields in an enclosed space. We formulate the problem as a Tikhonov regularized inverse problem and propose a low-rank approximation of the spatial correlation that results in significant computational gains. Our approximation is applicable to arbitrary sets of target points and allows us to produce an optimal design at a computational cost that grows only linearly with the (potentially large) number of target points. We demonstrate the feasibility of our approach through numerical examples where we approximate diffuse fields at frequencies well below the Schroeder limit.

2.
Inverse Probl ; 39(10)2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37990698

RESUMEN

We propose a general framework for obtaining probabilistic solutions to PDE-based inverse problems. Bayesian methods are attractive for uncertainty quantification but assume knowledge of the likelihood model or data generation process. This assumption is difficult to justify in many inverse problems, where the specification of the data generation process is not obvious. We adopt a Gibbs posterior framework that directly posits a regularized variational problem on the space of probability distributions of the parameter. We propose a novel model comparison framework that evaluates the optimality of a given loss based on its "predictive performance". We provide cross-validation procedures to calibrate the regularization parameter of the variational objective and compare multiple loss functions. Some novel theoretical properties of Gibbs posteriors are also presented. We illustrate the utility of our framework via a simulated example, motivated by dispersion-based wave models used to characterize arterial vessels in ultrasound vibrometry.

3.
J Acoust Soc Am ; 143(1): EL31, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29390786

RESUMEN

This letter demonstrates the design of continuously graded elastic cylinders to achieve passive cloaking from harmonic acoustic excitation, both at single frequencies and over extended bandwidths. The constitutive parameters in a multilayered, constant-density cylinder are selected in a partial differential equation-constrained optimization problem, such that the residual between the pressure field from an unobstructed spreading wave in a fluid and the pressure field produced by the cylindrical inclusion is minimized. The radial variation in bulk modulus appears fundamental to the cloaking behavior, while the shear modulus distribution plays a secondary role. Such structures could be realized with functionally-graded elastic materials.

4.
J Acoust Soc Am ; 142(4): 2084, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-29092577

RESUMEN

A partial differential equation-constrained optimization approach is presented for reconstructing mechanical properties (e.g., elastic moduli). The proposed method is based on the minimization of an error in constitutive equations functional augmented with a least squares data misfit term referred to as MECE for "modified error in constitutive equations." The main theme of this paper is to demonstrate several key strengths of the proposed method on experimental data. In addition, some illustrative examples are provided where the proposed method is compared with a common shear wave elastography (SWE) approach. To this end, both synthetic data, generated with transient finite element simulations, as well as ultrasonically tracked displacement data from an acoustic radiation force (ARF) experiment are used in a standard elasticity phantom. The results indicate that the MECE approach can produce accurate shear modulus reconstructions with significantly less bias than SWE.


Asunto(s)
Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Teóricos , Ondas Ultrasónicas , Simulación por Computador , Módulo de Elasticidad , Diagnóstico por Imagen de Elasticidad/instrumentación , Análisis de Elementos Finitos , Análisis de los Mínimos Cuadrados , Movimiento (Física) , Fantasmas de Imagen , Reproducibilidad de los Resultados
5.
Comput Methods Appl Mech Eng ; 296: 129-149, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26388656

RESUMEN

This paper presents a methodology for the inverse identification of linearly viscoelastic material parameters in the context of steady-state dynamics using interior data. The inverse problem of viscoelasticity imaging is solved by minimizing a modified error in constitutive equation (MECE) functional, subject to the conservation of linear momentum. The treatment is applicable to configurations where boundary conditions may be partially or completely underspecified. The MECE functional measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, and also incorporates the measurement data in a quadratic penalty term. Regularization of the problem is achieved through a penalty parameter in combination with the discrepancy principle due to Morozov. Numerical results demonstrate the robust performance of the method in situations where the available measurement data is incomplete and corrupted by noise of varying levels.

6.
Comput Methods Appl Mech Eng ; 285: 488-514, 2015 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-25558115

RESUMEN

This work presents a novel methodology for solving inverse problems under uncertainty using stochastic reduced order models (SROMs). Given statistical information about an observed state variable in a system, unknown parameters are estimated probabilistically through the solution of a model-constrained, stochastic optimization problem. The point of departure and crux of the proposed framework is the representation of a random quantity using a SROM - a low dimensional, discrete approximation to a continuous random element that permits e cient and non-intrusive stochastic computations. Characterizing the uncertainties with SROMs transforms the stochastic optimization problem into a deterministic one. The non-intrusive nature of SROMs facilitates e cient gradient computations for random vector unknowns and relies entirely on calls to existing deterministic solvers. Furthermore, the method is naturally extended to handle multiple sources of uncertainty in cases where state variable data, system parameters, and boundary conditions are all considered random. The new and widely-applicable SROM framework is formulated for a general stochastic optimization problem in terms of an abstract objective function and constraining model. For demonstration purposes, however, we study its performance in the specific case of inverse identification of random material parameters in elastodynamics. We demonstrate the ability to efficiently recover random shear moduli given material displacement statistics as input data. We also show that the approach remains effective for the case where the loading in the problem is random as well.

7.
Comput Methods Appl Mech Eng ; 253: 60-72, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23180893

RESUMEN

This paper presents the formulation and implementation of an Error in Constitutive Equations (ECE) method suitable for large-scale inverse identification of linear elastic material properties in the context of steady-state elastodynamics. In ECE-based methods, the inverse problem is postulated as an optimization problem in which the cost functional measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses. Furthermore, in a more recent modality of this methodology introduced by Feissel and Allix (2007), referred to as the Modified ECE (MECE), the measured data is incorporated into the formulation as a quadratic penalty term. We show that a simple and efficient continuation scheme for the penalty term, suggested by the theory of quadratic penalty methods, can significantly accelerate the convergence of the MECE algorithm. Furthermore, a (block) successive over-relaxation (SOR) technique is introduced, enabling the use of existing parallel finite element codes with minimal modification to solve the coupled system of equations that arises from the optimality conditions in MECE methods. Our numerical results demonstrate that the proposed methodology can successfully reconstruct the spatial distribution of elastic material parameters from partial and noisy measurements in as few as ten iterations in a 2D example and fifty in a 3D example. We show (through numerical experiments) that the proposed continuation scheme can improve the rate of convergence of MECE methods by at least an order of magnitude versus the alternative of using a fixed penalty parameter. Furthermore, the proposed block SOR strategy coupled with existing parallel solvers produces a computationally efficient MECE method that can be used for large scale materials identification problems, as demonstrated on a 3D example involving about 400,000 unknown moduli. Finally, our numerical results suggest that the proposed MECE approach can be significantly faster than the conventional approach of L(2) minimization using quasi-Newton methods.

8.
Phys Med Biol ; 67(13)2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35654033

RESUMEN

Objective. Arterial dispersion ultrasound vibrometry (ADUV) relies on the use of guided waves in arterial geometries for shear wave elastography measurements. Both the generation of waves through the use of acoustic radiation force (ARF) and the techniques employed to infer the speed of the resulting wave motion affect the spectral content and accuracy of the measurement. In particular, the effects of the shape and location of the ARF beam in ADUV have not been widely studied. In this work, we investigated how such variations of the ARF beam affect the induced motion and the measurements in the dispersive modes that are excited.Approach.The study includes an experimental evaluation on an arterial phantom and anin vivovalidation of the observed trends, observing the two walls of the waveguide, simultaneously, when subjected to variations in the ARF beam extension (F/N) and focus location.Main results.Relying on the theory of guided waves in cylindrical shells, the shape of the beam controls the selection and nature of the induced modes, while the location affects the measured dispersion curves (i.e. variation of phase velocity with frequency or wavenumber, multiple modes) across the waveguide walls.Significance.This investigation is important to understand the spectral content variations in ADUV measurements and to maximize inversion accuracy by tuning the ARF beam settings in clinical applications.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Acústica , Diagnóstico por Imagen de Elasticidad/métodos , Fantasmas de Imagen , Ultrasonografía
9.
Urology ; 159: 247-254, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34757048

RESUMEN

OBJECTIVE: To develop a machine learning algorithm that identifies detrusor overactivity (DO) in Urodynamic Studies (UDS) in the spina bifida population. UDS plays a key role in assessment of neurogenic bladder in patients with spina bifida. Due to significant variability in individual interpretations of UDS data, there is a need to standardize UDS interpretation. MATERIALS AND METHODS: Patients who underwent UDS at a single pediatric urology clinic between May 2012 and September 2020 were included. UDS files were analyzed in both time and frequency domains, varying inclusion of vesical, abdominal, and detrusor pressure channels. A machine learning pipeline was constructed using data windowing, dimensionality reduction, and support vector machines. Models were designed to detect clinician identified detrusor overactivity. RESULTS: Data were extracted from 805 UDS testing files from 546 unique patients. The generated models achieved good performance metrics in detecting DO agreement with the clinician, in both time- and frequency-based approaches. Incorporation of multiple channels and data windowing improved performance. The time-based model with all 3 channels had the highest area under the curve (AUC) (91.9 ± 1.3%; sensitivity: 84.2 ± 3.8%; specificity: 86.4 ± 1.3%). The 3-channel frequency-based model had the highest specificity (AUC: 90.5 ± 1.9%; sensitivity: 68.3 ± 5.3%; specificity: 92.9 ± 1.1%). CONCLUSION: We developed a promising proof-of-concept machine learning pipeline that identifies DO in UDS. Machine-learning-based predictive modeling algorithms may be employed to standardize UDS interpretation and could potentially augment shared decision-making and improve patient care.


Asunto(s)
Aprendizaje Automático , Vejiga Urinaria Hiperactiva/diagnóstico , Vejiga Urinaria Hiperactiva/fisiopatología , Urodinámica , Adolescente , Adulto , Niño , Preescolar , Humanos , Lactante , Disrafia Espinal/complicaciones , Vejiga Urinaria Hiperactiva/etiología , Adulto Joven
10.
Comput Methods Appl Mech Eng ; 200(5-8): 692-698, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21461402

RESUMEN

An approach for efficient and accurate finite element analysis of harmonically excited soft solids using high-order spectral finite elements is presented and evaluated. The Helmholtz-type equations used to model such systems suffer from additional numerical error known as pollution when excitation frequency becomes high relative to stiffness (i.e. high wave number), which is the case, for example, for soft tissues subject to ultrasound excitations. The use of high-order polynomial elements allows for a reduction in this pollution error, but requires additional consideration to counteract Runge's phenomenon and/or poor linear system conditioning, which has led to the use of spectral element approaches. This work examines in detail the computational benefits and practical applicability of high-order spectral elements for such problems. The spectral elements examined are tensor product elements (i.e. quad or brick elements) of high-order Lagrangian polynomials with non-uniformly distributed Gauss-Lobatto-Legendre nodal points. A shear plane wave example is presented to show the dependence of the accuracy and computational expense of high-order elements on wave number. Then, a convergence study for a viscoelastic acoustic-structure interaction finite element model of an actual ultrasound driven vibroacoustic experiment is shown. The number of degrees of freedom required for a given accuracy level was found to consistently decrease with increasing element order. However, the computationally optimal element order was found to strongly depend on the wave number.

11.
Phys Med Biol ; 66(12)2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140433

RESUMEN

In this paper, we propose plane wave elastography (PWE), a novel ultrasound shear wave elastography (SWE) approach. Currently, commercial methods for SWE rely on directional filtering based on the prior knowledge of the wave propagation direction, to remove complicated wave patterns formed due to reflection and refraction. The result is a set of decomposed directional waves that are separately analyzed to construct shear modulus fields that are then combined through compounding. Instead, PWE relies on a rigorous representation of the wave propagation using the frequency-domain scalar wave equation to automatically select appropriate propagation directions and simultaneously reconstruct shear modulus fields. Specifically, assuming a homogeneous, isotropic, incompressible, linear-elastic medium, we represent the solution of the wave equation using a linear combination of plane waves propagating in arbitrary directions. Given this closed-form solution, we formulate the SWE problem as a nonlinear least-squares optimization problem which can be solved very efficiently. Through numerous phantom studies, we show that PWE can handle complicated waveforms without prior filtering and is competitive with state-of-the-art that requires prior filtering based on the knowledge of propagation directions.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Fantasmas de Imagen , Ultrasonografía
12.
Phys Med Biol ; 66(23)2021 11 26.
Artículo en Inglés | MEDLINE | ID: mdl-34763319

RESUMEN

Dispersion-based inversion has been proposed as a viable direction for materials characterization of arteries, allowing clinicians to better study cardiovascular conditions using shear wave elastography. However, these methods rely ona prioriknowledge of the vibrational modes dominating the propagating waves induced by acoustic radiation force excitation: differences between anticipated and real modal content are known to yield errors in the inversion. We seek to improve the accuracy of this process by modeling the artery as a fluid-immersed cylindrical waveguide and building an analytical framework to prescribe radiation force excitations that will selectively excite certain waveguide modes using ultrasound acoustic radiation force. We show that all even-numbered waveguide modes can be eliminated from the arterial response to perturbation, and confirm the efficacy of this approach within silicotests that show that odd modes are preferentially excited. Finally, by analyzing data from phantom tests, we find a set of ultrasound focal parameters that demonstrate the viability of inducing the desired odd-mode response in experiments.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Acústica , Arterias/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Fantasmas de Imagen , Ultrasonografía
14.
Int J Numer Methods Eng ; 110(7): 618-636, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28713177

RESUMEN

In this work, we use Nitsche's formulation to weakly enforce kinematic constraints at an embedded interface in Helmholtz problems. Allowing embedded interfaces in a mesh provides significant ease for discretization, especially when material interfaces have complex geometries. We provide analytical results that establish the well-posedness of Helmholtz variational problems and convergence of the corresponding finite element discretizations when Nitsche's method is used to enforce kinematic constraints. As in the analysis of conventional Helmholtz problems, we show that the inf-sup constant remains positive provided that the Nitsche's stabilization parameter is judiciously chosen. We then apply our formulation to several 2D plane-wave examples that confirm our analytical findings. Doing so, we demonstrate the asymptotic convergence of the proposed method and show that numerical results are in accordance with the theoretical analysis.

15.
Phys Med Biol ; 62(13): 5473-5494, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28609299

RESUMEN

Arterial stiffness is found to be an early indicator of many cardiovascular diseases. Among various techniques, shear wave elastography has emerged as a promising tool for estimating local arterial stiffness through the observed dispersion of guided waves. In this paper, we develop efficient models for the computational simulation of guided wave dispersion in arterial walls. The models are capable of considering fluid-loaded tubes, immersed in fluid or embedded in a solid, which are encountered in in vitro/ex vivo, and in vivo experiments. The proposed methods are based on judiciously combining Fourier transformation and finite element discretization, leading to a significant reduction in computational cost while fully capturing complex 3D wave propagation. The developed methods are implemented in open-source code, and verified by comparing them with significantly more expensive, fully 3D finite element models. We also validate the models using the shear wave elastography of tissue-mimicking phantoms. The computational efficiency of the developed methods indicates the possibility of being able to estimate arterial stiffness in real time, which would be beneficial in clinical settings.


Asunto(s)
Arterias/diagnóstico por imagen , Diagnóstico por Imagen de Elasticidad/métodos , Modelos Biológicos , Resistencia al Corte , Arterias/fisiología , Fenómenos Biomecánicos , Análisis de Elementos Finitos , Análisis de Fourier , Humanos , Fantasmas de Imagen , Rigidez Vascular
16.
Phys Med Biol ; 60(13): 5279-96, 2015 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-26109582

RESUMEN

The elastic and geometric properties of arteries have been long recognized as important predictors of cardiovascular disease. This work presents a robust technique for the noninvasive characterization of anisotropic elastic properties as well as thickness and diameter in arterial vessels. In our approach, guided waves are excited along arteries using the radiation force of ultrasound. Group velocity is used as the quantity of interest to reconstruct elastic and geometric features of the vessels. One of the main contributions of this work is a systematic approach based on sparse-grid collocation interpolation to construct surrogate models of arteries. These surrogate models are in turn used with direct-search optimization techniques to produce fast and accurate estimates of elastic properties, diameter, and thickness. One of the attractive features of the proposed approach is that once a surrogate model is built, it can be used for near real-time identification across many different types of arteries. We demonstrate the feasibility of the method using simulated and in vitro laboratory experiments on a silicon rubber tube and a porcine carotid artery. Our results show that using our proposed method, we can reliably identify the longitudinal modulus, thickness, and diameter of arteries. The circumferential modulus was found to have little influence in the group velocity, which renders the former quantity unidentifiable using the current experimental setting. Future work will consider the measurement of circumferential waves with the objective of improving the identifiability of the circumferential modulus.


Asunto(s)
Arterias Carótidas/diagnóstico por imagen , Arterias Carótidas/fisiología , Elasticidad , Interpretación de Imagen Asistida por Computador/métodos , Ondas Ultrasónicas , Algoritmos , Animales , Simulación por Computador , Estudios de Factibilidad , Estrés Mecánico , Porcinos , Ultrasonografía
17.
Comput Mech ; 54(3): 645-659, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25339790

RESUMEN

This work focuses on the identification of heterogeneous linear elastic moduli in the context of frequency-domain, coupled acoustic-structure interaction (ASI), using either solid displacement or fluid pressure measurement data. The approach postulates the inverse problem as an optimization problem where the solution is obtained by minimizing a modified error in constitutive equation (MECE) functional. The latter measures the discrepancy in the constitutive equations that connect kinematically admissible strains and dynamically admissible stresses, while incorporating the measurement data as additional quadratic error terms. We demonstrate two strategies for selecting the MECE weighting coefficient to produce regularized solutions to the ill-posed identification problem: 1) the discrepancy principle of Morozov, and 2) an error-balance approach that selects the weight parameter as the minimizer of another functional involving the ECE and the data misfit. Numerical results demonstrate that the proposed methodology can successfully recover elastic parameters in 2D and 3D ASI systems from response measurements taken in either the solid or fluid subdomains. Furthermore, both regularization strategies are shown to produce accurate reconstructions when the measurement data is polluted with noise. The discrepancy principle is shown to produce nearly optimal solutions, while the error-balance approach, although not optimal, remains effective and does not need a priori information on the noise level.

18.
Curr Med Imaging Rev ; 7(4): 350-359, 2011 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-22423235

RESUMEN

In recent years, several new techniques based on the radiation force of ultrasound have been developed. Vibro-acoustography is a speckle-free ultrasound based imaging modality that can visualize normal and abnormal soft tissue through mapping the acoustic response of the object to a harmonic radiation force induced by ultrasound. In vibro-acoustography, the ultrasound energy is converted from high ultrasound frequencies to a low acoustic frequency (acoustic emission) that is often two orders of magnitude smaller than the ultrasound frequency. The acoustic emission is normally detected by a hydrophone. In medical imaging, vibroacoustography has been tested on breast, prostate, arteries, liver, and thyroid. These studies have shown that vibro-acoustic data can be used for quantitative evaluation of elastic properties. This paper presents an overview of vibro-acoustography and its applications in the areas of biomedicine.

19.
Phys Med Biol ; 56(11): 3371-86, 2011 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-21558593

RESUMEN

Arterial elasticity has gained importance in recent decades because it has been shown to be an independent predictor of cardiovascular diseases. Several in vivo and ex vivo techniques have been developed to characterize the elastic properties of vessels. In vivo techniques tend to ignore the anisotropy of the mechanical properties in the vessel wall, and therefore fail to characterize elasticity in different directions. Ex vivo techniques have been focused on studying the mechanical properties in different axes. In this paper, we present a technique that uses piezoelectric elements to measure the elasticity of soft tubes and excised arteries in two directions while maintaining the natural structure of these vessels. This technique uses sonometry data from piezoelectric elements to measure the strain in the longitudinal and circumferential directions while the tubes/arteries are being pressurized. We conducted experiments on urethane tubes to evaluate the technique and compared the experimental results with mechanical testing done on the materials used for making the tubes. We then performed sonometry experiments on excised pig carotid arteries assuming that they are transversely isotropic materials. To evaluate the sensitivity of this technique to changes in the material properties, we changed the temperature of the saline bath in which the arteries were immersed. The calculated Young's modulus from sonometry experiments for the urethane tubes and the mechanical testing values showed good agreement, deviating no more than 13.1%. The elasticity values from the excised arteries and the behavior with the temperature changed agreed with previous work done in similar arteries. Therefore, we propose this technique for nondestructive testing of the biaxial properties of soft material tubes and excised arteries in their natural physiological shape.


Asunto(s)
Arterias , Electricidad , Estrés Mecánico , Ultrasonido , Animales , Arterias Carótidas , Elasticidad , Femenino , Presión , Porcinos , Uretano
20.
IEEE Trans Med Imaging ; 29(4): 1012-21, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20335092

RESUMEN

A methodology for estimating the spatial distribution of elastic moduli using the steady-state dynamic response of solids immersed in fluids is presented. The technique relies on the ensuing acoustic field from a remotely excited solid to inversely estimate the spatial distribution of Young's modulus of biological structures (e.g., breast tissue). This work proposes the use of Gaussian radial basis functions (GRBF) to represent the spatial variation of elastic moduli. GRBF are shown to possess the advantage of representing smooth functions with quasi-compact support and can efficiently represent elastic moduli distributions such as those that occur in soft biological tissue in the presence of unhealthy tissue (e.g., tumors and calcifications). The direct problem consists of a coupled acoustic-structure interaction boundary-value problem solved in the frequency domain using the finite element method. The inverse problem is cast as an optimization problem in which the error functional is defined as a measure of discrepancy between an experimentally measured response and a finite element representation of the system. Nongradient based optimization algorithms are used to solve the resulting optimization problem. The feasibility of the proposed approach is demonstrated through a series of simulations and an experiment. For comparison purposes, the surface velocity response was also used for the inverse characterization as the measured response in place of the acoustic pressure.


Asunto(s)
Algoritmos , Diagnóstico por Imagen de Elasticidad/métodos , Interpretación de Imagen Asistida por Computador/métodos , Modelos Biológicos , Acústica , Animales , Simulación por Computador , Interpretación Estadística de Datos , Módulo de Elasticidad/fisiología , Humanos , Aumento de la Imagen/métodos , Modelos Estadísticos , Distribución Normal , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Vibración
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda