Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 132(6): 065102, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38394591

RESUMEN

On December 5, 2022, an indirect drive fusion implosion on the National Ignition Facility (NIF) achieved a target gain G_{target} of 1.5. This is the first laboratory demonstration of exceeding "scientific breakeven" (or G_{target}>1) where 2.05 MJ of 351 nm laser light produced 3.1 MJ of total fusion yield, a result which significantly exceeds the Lawson criterion for fusion ignition as reported in a previous NIF implosion [H. Abu-Shawareb et al. (Indirect Drive ICF Collaboration), Phys. Rev. Lett. 129, 075001 (2022)PRLTAO0031-900710.1103/PhysRevLett.129.075001]. This achievement is the culmination of more than five decades of research and gives proof that laboratory fusion, based on fundamental physics principles, is possible. This Letter reports on the target, laser, design, and experimental advancements that led to this result.

2.
Phys Rev Lett ; 129(7): 075001, 2022 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-36018710

RESUMEN

For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion.

3.
Appl Opt ; 59(6): 1602-1610, 2020 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-32225658

RESUMEN

A novel, to the best of our knowledge, method of wet chemical etching of sapphire workpieces (such as optics, wafers, windows, and cones), called the sapphire advanced mitigation process (or sapphire AMP), has been developed that exposes sub-surface mechanical damage created during the optical fabrication process and significantly enhances the surface laser damage resistance ($ \gt {2{\times}}$>2×) and mechanical strength (up to $\sim{2.6{\times}}$∼2.6×). Sapphire AMP involves first treating the workpiece with a mixture of sulfuric and phosphoric acid $([{\rm H_{2}{\rm SO_{4}}}]:[{\rm H_{3}{\rm PO_{4}}}]=1:3)$([H2SO4]:[H3PO4]=1:3) at 220°C, followed with phosphoric acid at 160°C, then with sodium hydroxide base (NaOH) and surfactant at 40°C, and finally with a high-pressure deionized water spray rinse. Sapphire AMP has been demonstrated on both A- and C-plane sapphire workpieces. The mechanism of this etch process involves the reaction of the sapphire $({\rm Al_{2}}{\rm O_{3}})$(Al2O3) surface with sulfuric acid $({\rm H_{2}}{\rm SO_{4}})$(H2SO4) forming aluminum sulfate $[{{\rm Al}_2}{({{\rm SO}_4})_3}]$[Al2(SO4)3], which has low solubility. The high phosphoric acid content in the first and second steps of sapphire AMP results in the efficient conversion of ${{\rm Al}_2}{({{\rm SO}_4})_3}$Al2(SO4)3 to aluminum phosphate $({\rm AlPO_{4}})$(AlPO4), which is very soluble, greatly reducing reaction product redeposition on the workpiece surface. Sapphire AMP is shown to expose sub-surface mechanical damage on the sapphire surface created during the grinding and polishing processes, whose etched morphology has either isotropic or anisotropic evolution depending on the nature of the initial surface damage. Sapphire AMP was also designed to remove the key known surface, laser absorbing precursors (namely, foreign chemical impurities, the fracture surface layer of preexisting sub-surface damage, and reaction product or foreign species redeposition or precipitation). Static and sliding indention induced surface microfractures on sapphire are shown after sapphire AMP to have a significant decrease in the fast photoluminescence intensity (a known metric for measuring the degree of laser damaging absorbing precursors). In addition, the onset of laser damage (at 351 nm 3 ns) on sapphire AMP treated workpieces was shown to increase in fluence from $\sim{4}$∼4 to $ \gt {9}.{5}\;{{\rm J/cm}^2}$>9.5J/cm2. Finally, biaxial ball-on-ring mechanical tests on sapphire disks showed an increase in the failure stress from 340 MPa (with pre-existing 28 µm flaws) to $\sim{900}\;{\rm MPa}$∼900MPa after sapphire AMP, which is attributed to the blunting of the surface microfractures.

4.
Phys Rev Lett ; 106(6): 065701, 2011 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-21405478

RESUMEN

The cerium γ⇄α transition was investigated using high-pressure, high-temperature angle-dispersive x-ray diffraction measurements on both poly- and single-crystalline samples, explicitly addressing symmetry change and transformation paths. The isomorphic hypothesis of the transition is confirmed, with a transition line ending at a solid-solid critical point. The critical exponent is determined, showing a universal behavior that can be pictured as a liquid-gas transition. We further report an isomorphic transition between two single crystals (with more than 14% of volume difference), an unparalleled observation in solid-state matter interpreted in terms of dislocation-induced diffusionless first-order phase transformation.

5.
J Phys Condens Matter ; 25(34): 345401, 2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-23884010

RESUMEN

The longitudinal and transverse sound speeds, cL and cT, of polycrystalline cerium were measured under pressure across the iso-structural γ-α phase transition at 0.75 GPa to beyond 3 GPa. In contrast to previous methods all quantities were directly obtained and no assumptions were made about the size of the volume collapse. Up to the transition our values for cL are in excellent agreement with previous ones, while our values for cT are significantly lower. We deduce values for the adiabatic bulk modulus BS, the shear modulus [Formula: see text], and the pressure dependent Debye temperature, ΘD(p). ΘD(p) is in good agreement with recent results derived from phonon dispersion measurements on single crystals. The ratio of the Debye temperature values bracketing the transition indicates a lattice contribution to the entropy change across the volume collapse, ΔSvib(γ â†’ α) ≈ (0.68 ± 0.06)kB, consistent with previous results obtained by neutron scattering, but significantly larger than other previously determined values.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda