Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Lab Chip ; 22(1): 156-169, 2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34881383

RESUMEN

Wearable sweat biosensors offer compelling opportunities for improved personal health monitoring and non-invasive measurements of key biomarkers. Inexpensive device fabrication methods are necessary for scalable manufacturing of portable, disposable, and flexible sweat sensors. Furthermore, real-time sweat assessment must be analyzed to validate measurement reliability at various sweating rates. Here, we demonstrate a "smart bandage" microfluidic platform for cortisol detection and continuous glucose monitoring integrated with a synthetic skin. The low-cost, laser-cut microfluidic device is composed of an adhesive-based microchannel and solution-processed electrochemical sensors fabricated from inkjet-printed graphene and silver solutions. An antibody-derived cortisol sensor achieved a limit of detection of 10 pM and included a low-voltage electrowetting valve, validating the microfluidic sensor design under typical physiological conditions. To understand effects of perspiration rate on sensor performance, a synthetic skin was developed using soft lithography to mimic human sweat pores and sweating rates. The enzymatic glucose sensor exhibited a range of 0.2 to 1.0 mM, a limit of detection of 10 µM, and reproducible response curves at flow rates of 2.0 µL min-1 and higher when integrated with the synthetic skin, validating its relevance for human health monitoring. These results demonstrate the potential of using printed microfluidic sweat sensors as a low-cost, real-time, multi-diagnostic device for human health monitoring.


Asunto(s)
Técnicas Biosensibles , Sudor , Glucemia , Automonitorización de la Glucosa Sanguínea , Glucosa , Humanos , Hidrocortisona , Microfluídica , Reproducibilidad de los Resultados , Sudoración
2.
ACS Appl Mater Interfaces ; 10(31): 26745-26751, 2018 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-29999309

RESUMEN

The relationship between charge transport and surface morphology is investigated by utilizing rubrene single crystals of varying thicknesses. In the case of pristine crystals, the surface conductivities decrease exponentially as the crystal thickness increases until ∼4 µm, beyond which the surface conductivity saturates. Investigation of the surface morphology using optical and atomic force microscopy reveals that thicker crystals have a higher number of molecular steps, increasing the overall surface roughness compared with thin crystals. The density of molecular steps as a surface trap is further quantified with the subthreshold slope of rubrene air-gap transistors. This thickness-dependent surface conductivity is rationalized by a shift from in-plane to out-of-plane transport governed by surface roughness. The surface transport is disrupted by roughening of the crystal surface and becomes limited by the slower vertical crystallographic axis on molecular step edges. Separately, we investigate surface-doping of rubrene crystals by using fluoroalkyltrichrolosilane and observe a different mechanism for charge transport which is independent of surface roughness. This work demonstrates that the correlation between crystal thickness, surface morphology, and charge transport must be taken into account when measuring organic single crystals. Considering the fact that these molecular steps are universally observed on organic/inorganic and single/polycrystals, we believe that our findings can be widely applied to improve charge transport understanding.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda