Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Molecules ; 27(13)2022 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35807236

RESUMEN

For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor-acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.


Asunto(s)
Tiazoles , Tiazoles/química
2.
Curr Neuropharmacol ; 21(7): 1558-1574, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35950245

RESUMEN

Quercetin (Qu), a dietary flavonoid, is obtained from many fruits and vegetables such as coriander, broccoli, capers, asparagus, onion, figs, radish leaves, cranberry, walnuts, and citrus fruits. It has proven its role as a nutraceutical owing to numerous pharmacological effects against various diseases in preclinical studies. Despite these facts, Qu and its nanoparticles are less explored in clinical research as a nutraceutical. The present review covers various neuroprotective actions of Qu against various neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Huntington's, and Amyotrophic lateral sclerosis. A literature search was conducted to systematically review the various mechanistic pathways through which Qu elicits its neuroprotective actions and the challenges associated with raw Qu that compromise therapeutic efficacy. The nanoformulations developed to enhance Qu's therapeutic efficacy are also covered. Various ongoing/completed clinical trials related to Qu in treating various diseases, including NDs, are also tabulated. Despite these many successes, the exploration of research on Qu-loaded nanoformulations is limited mostly to preclinical studies, probably due to poor drug loading and stability of the formulation, time-consuming steps involved in the formulation, and their poor scale-up capacity. Hence, future efforts are required in this area to reach Qu nanoformulations to the clinical level.


Asunto(s)
Nanopartículas , Enfermedades Neurodegenerativas , Humanos , Quercetina/uso terapéutico , Quercetina/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico
3.
Chem Biol Interact ; 361: 109960, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35533733

RESUMEN

In recent years, unique physicochemical properties of amphiphilic block copolymers have been utilized to design the polymeric micelles for brain-specific delivery of drugs, proteins, peptides and genes. Their unique properties such as nano-size, charge-switching ability, stimuli-responsive cargo release, flexible structure, and self-assembly enable them to overcome limitations of conventional dosage forms that include rapid drug release, drug efflux, and poor brain bioavailability, and poor stability. These limitations hinder their therapeutic efficacy in treating brain diseases. Their ease of functionalization and enhanced penetration and retention effect make them suitable nanocarriers for the diagnosis of various brain diseases. In this context, the present manuscript provides an insight into the progress made in the functionalization of micelles such as the incorporation of stimuli-sensitive moieties in copolymers, conjugation of cargo molecules with the core-forming block via responsive smart linkers, and conjugation of active ligands and imaging moieties with the corona forming block for brain targeting and imaging. Further, the review also expounds on the role of polymeric micelles in delivering neurotherapeutic to the brain. Some patents related to polymeric micelles formulated for brain delivery are also enlisted.


Asunto(s)
Encefalopatías , Micelas , Encéfalo , Encefalopatías/tratamiento farmacológico , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Humanos , Polímeros/química
4.
Int J Pharm ; 624: 121987, 2022 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-35878873

RESUMEN

The co-formulation of glyburide (Gly) and vanillic acid (VA) as such in the form of nanomedicine has never been explored to treat metabolic diseases including type 2 diabetes mellitus. Both the drugs possess dissolution rate-limited oral bioavailability leading to poor therapeutic efficacy. Hence, co-loading these drugs into a nanocarrier could overcome their poor oral bioavailability related challenges. Owing to this objective, both drugs were co-loaded in amphiphilic polymeric micelles (APMs) and evaluated for their biopharmaceutical outcomes. The APMs were prepared using mPEG-b-PCL/CTAB as a copolymer-surfactant system via the liquid antisolvent precipitation (LAP) method. The design of these APMs were optimized using Box Behnken Design by taking various process/formulation based variables to achieve the desired micellar traits. The release of both the drugs from the optimized co-loaded APMs was compared in different media and displayed a remarkable sustained release profile owing to their hydrophobic interactions with the PCL core. The in vitro cytotoxicity study of co-loaded APMs on Caco-2 cells revealed 70 % cell viability in a concentration-dependent manner. The preventive effects of Gly and VA co-loaded in APMs on glucose uptake was studied in insulin-responsive human HepG2 cells treated with high glucose. The co-loading of both the drugs in optimized APMs exhibited synergistic glucose-lowering activity (p < 0.001) than raw drugs with low cytotoxicity on HepG2 cells within the test concentration. This could be attributed to an increase in the relative oral bioavailability of both the drugs in APMs i.e., 868 % for Gly and 87 % for VA respectively.


Asunto(s)
Diabetes Mellitus Tipo 2 , Micelas , Disponibilidad Biológica , Células CACO-2 , Portadores de Fármacos/química , Glucosa , Gliburida , Humanos , Polietilenglicoles/química , Polímeros/química , Ácido Vanílico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda