Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nat Cell Biol ; 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39385049

RESUMEN

Amino acid (AA) availability is a robust determinant of cell growth through controlling mechanistic/mammalian target of rapamycin complex 1 (mTORC1) activity. According to the predominant model in the field, AA sufficiency drives the recruitment and activation of mTORC1 on the lysosomal surface by the heterodimeric Rag GTPases, from where it coordinates the majority of cellular processes. Importantly, however, the teleonomy of the proposed lysosomal regulation of mTORC1 and where mTORC1 acts on its effector proteins remain enigmatic. Here, by using multiple pharmacological and genetic means to perturb the lysosomal AA-sensing and protein recycling machineries, we describe the spatial separation of mTORC1 regulation and downstream functions in mammalian cells, with lysosomal and non-lysosomal mTORC1 phosphorylating distinct substrates in response to different AA sources. Moreover, we reveal that a fraction of mTOR localizes at lysosomes owing to basal lysosomal proteolysis that locally supplies new AAs, even in cells grown in the presence of extracellular nutrients, whereas cytoplasmic mTORC1 is regulated by exogenous AAs. Overall, our study substantially expands our knowledge about the topology of mTORC1 regulation by AAs and hints at the existence of distinct, Rag- and lysosome-independent mechanisms that control its activity at other subcellular locations. Given the importance of mTORC1 signalling and AA sensing for human ageing and disease, our findings will probably pave the way towards the identification of function-specific mTORC1 regulators and thus highlight more effective targets for drug discovery against conditions with dysregulated mTORC1 activity in the future.

2.
Aging Cell ; 22(8): e13888, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222020

RESUMEN

Rapamycin is a macrolide antibiotic that functions as an immunosuppressive and anti-cancer agent, and displays robust anti-ageing effects in multiple organisms including humans. Importantly, rapamycin analogues (rapalogs) are of clinical importance against certain cancer types and neurodevelopmental diseases. Although rapamycin is widely perceived as an allosteric inhibitor of mTOR (mechanistic target of rapamycin), the master regulator of cellular and organismal physiology, its specificity has not been thoroughly evaluated so far. In fact, previous studies in cells and in mice hinted that rapamycin may be also acting independently from mTOR to influence various cellular processes. Here, we generated a gene-edited cell line that expresses a rapamycin-resistant mTOR mutant (mTORRR ) and assessed the effects of rapamycin treatment on the transcriptome and proteome of control or mTORRR -expressing cells. Our data reveal a striking specificity of rapamycin towards mTOR, demonstrated by virtually no changes in mRNA or protein levels in rapamycin-treated mTORRR cells, even following prolonged drug treatment. Overall, this study provides the first unbiased and conclusive assessment of rapamycin's specificity, with potential implications for ageing research and human therapeutics.


Asunto(s)
Inhibidores mTOR , Transducción de Señal , Ratones , Humanos , Animales , Línea Celular Tumoral , Serina-Treonina Quinasas TOR/metabolismo , Sirolimus/farmacología , Sirolimus/uso terapéutico , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
3.
J Assoc Res Otolaryngol ; 19(5): 483-491, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30171385

RESUMEN

This study examines absolute hair cell numbers in the cristae of C57BL/6J mice and CBA/CaJ mice from weaning to adulthood as well as the dose required for 3,3'-iminodiproprionitrile (IDPN)-injury of the cristae in C57BL/6J mice and CBA/CaJ mice, the two mouse strains most commonly used by inner ear researchers. In cristae of CBA/CaJ and C57BL/6J mice, no loss of hair cells was observed up to 24 weeks. In both strains, dose-dependent loss of hair cells was observed 7 days after IDPN treatment of 2-month-old mice (IC50 = 16.1 mmol/kg in C57BL/6J mice vs. 25.21 mmol/kg in CBA/CaJ mice). Four-month-old C57BL/6J mice exposed to IDPN developed dose-dependent vestibular dysfunction as indicated by increased activity and circling behavior in open field tests and by failure to swim 7 days after treatment. IDPN-hair cell injury in C57BL/6J mice and CBA/CaJ mice represents a fast and predictable experimental model for the study of vestibular degeneration and a platform for the testing of vestibular therapies.


Asunto(s)
Células Ciliadas Auditivas/efectos de los fármacos , Nitrilos/toxicidad , Animales , Recuento de Células , Relación Dosis-Respuesta a Droga , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos CBA
4.
Cell Cycle ; 17(5): 535-549, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29466914

RESUMEN

To easily edit the genome of naïve human embryonic stem cells (hESC), we introduced a dual cassette encoding an inducible Cas9 into the AAVS1 site of naïve hESC (iCas9). The iCas9 line retained karyotypic stability, expression of pluripotency markers, differentiation potential, and stability in 5iLA and EPS pluripotency conditions. The iCas9 line induced efficient homology-directed repair (HDR) and non-homologous end joining (NHEJ) based mutations through CRISPR-Cas9 system. We utilized the iCas9 line to study the epigenetic regulator, PRC2 in early human pluripotency. The PRC2 requirement distinguishes between early pluripotency stages, however, what regulates PRC2 activity in these stages is not understood. We show reduced H3K27me3 and pluripotency markers in JARID2 2iL-I-F hESC mutants, indicating JARID2 requirement in maintenance of hESC 2iL-I-F state. These data suggest that JARID2 regulates PRC2 in 2iL-I-F state and the lack of PRC2 function in 5iLA state may be due to lack of sufficient JARID2 protein.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Complejo Represivo Polycomb 2/metabolismo , Blastocisto/citología , Blastocisto/metabolismo , Autorrenovación de las Células , Reparación del ADN por Unión de Extremidades , Sitios Genéticos , Histonas/metabolismo , Células Madre Embrionarias Humanas , Humanos , Mutación INDEL , Microscopía Confocal , Fenotipo , Complejo Represivo Polycomb 2/química , Complejo Represivo Polycomb 2/deficiencia , Complejo Represivo Polycomb 2/genética , Presenilina-2/genética , Presenilina-2/metabolismo , Dominios Proteicos
5.
Elife ; 62017 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-28925355

RESUMEN

Aging stem cells lose the capacity to properly respond to injury and regenerate their residing tissues. Here, we utilized the ability of Drosophila melanogaster germline stem cells (GSCs) to survive exposure to low doses of ionizing radiation (IR) as a model of adult stem cell injury and identified a regeneration defect in aging GSCs: while aging GSCs survive exposure to IR, they fail to reenter the cell cycle and regenerate the germline in a timely manner. Mechanistically, we identify foxo and mTOR homologue, Tor as important regulators of GSC quiescence following exposure to ionizing radiation. foxo is required for entry in quiescence, while Tor is essential for cell cycle reentry. Importantly, we further show that the lack of regeneration in aging germ line stem cells after IR can be rescued by loss of foxo.


Asunto(s)
Senescencia Celular , Proteínas de Drosophila/metabolismo , Factores de Transcripción Forkhead/metabolismo , Células Germinativas/fisiología , Proteínas Tirosina Quinasas Receptoras/metabolismo , Células Madre/fisiología , Animales , Proliferación Celular/efectos de la radiación , Drosophila melanogaster/efectos de la radiación , Células Germinativas/efectos de la radiación , Radiación Ionizante , Células Madre/efectos de la radiación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda