Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Nucleic Acids Res ; 51(6): 2586-2601, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36840712

RESUMEN

Progress in RNA metabolism and function studies relies largely on molecular imaging systems, including those comprising a fluorogenic dye and an aptamer-based fluorescence-activating tag. G4 aptamers of the Mango family, typically combined with a duplex/hairpin scaffold, activate the fluorescence of a green light-emitting dye TO1-biotin and hold great promise for intracellular RNA tracking. Here, we report a new Mango-based imaging platform. Its key advantages are the tunability of spectral properties and applicability for visualization of small RNA molecules that require minimal tag size. The former advantage is due to an expanded (green-to-red-emitting) palette of TO1-inspired fluorogenic dyes, and the truncated duplex scaffold ensures the latter. To illustrate the applicability of the improved platform, we tagged Mycobacterium tuberculosis sncRNA with the shortened aptamer-scaffold tag. Then, we visualized it in bacteria and bacteria-infected macrophages using the new red light-emitting Mango-activated dye.


Asunto(s)
Colorantes Fluorescentes , Macrófagos , Mangifera , ARN Pequeño no Traducido , Aptámeros de Nucleótidos/genética , Fluorescencia , Colorantes Fluorescentes/metabolismo , Mangifera/genética , Mangifera/metabolismo , ARN/metabolismo , Macrófagos/microbiología
2.
Int J Mol Sci ; 25(5)2024 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-38474204

RESUMEN

Ribosomal proteins (r-proteins) are abundant, highly conserved, and multifaceted cellular proteins in all domains of life. Most r-proteins have RNA-binding properties and can form protein-protein contacts. Bacterial r-proteins govern the co-transcriptional rRNA folding during ribosome assembly and participate in the formation of the ribosome functional sites, such as the mRNA-binding site, tRNA-binding sites, the peptidyl transferase center, and the protein exit tunnel. In addition to their primary role in a cell as integral components of the protein synthesis machinery, many r-proteins can function beyond the ribosome (the phenomenon known as moonlighting), acting either as individual regulatory proteins or in complexes with various cellular components. The extraribosomal activities of r-proteins have been studied over the decades. In the past decade, our understanding of r-protein functions has advanced significantly due to intensive studies on ribosomes and gene expression mechanisms not only in model bacteria like Escherichia coli or Bacillus subtilis but also in little-explored bacterial species from various phyla. The aim of this review is to update information on the multiple functions of r-proteins in bacteria.


Asunto(s)
Proteínas Bacterianas , Proteínas Ribosómicas , Proteínas Ribosómicas/metabolismo , Proteínas Bacterianas/metabolismo , Ribosomas/metabolismo , Biosíntesis de Proteínas , Bacterias/metabolismo , Escherichia coli/metabolismo , ARN Ribosómico/metabolismo
3.
Int J Mol Sci ; 24(16)2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37628885

RESUMEN

Bacterial adaptation to cold stress requires wide transcriptional reprogramming. However, the knowledge of molecular mechanisms underlying the cold stress response of mycobacteria is limited. We conducted comparative transcriptomic analysis of Mycobacterium smegmatis subjected to cold shock. The growth of M. smegmatis cultivated at 37 °C was arrested just after exposure to cold (acclimation phase) but later (by 24 h) was resumed at a much slower rate (adaptation phase). Transcriptomic analyses revealed distinct gene expression patterns corresponding to the two phases. During the acclimation phase, differential expression was observed for genes associated with cell wall remodeling, starvation response, and osmotic pressure stress, in parallel with global changes in the expression of transcription factors and the downregulation of ribosomal genes, suggesting an energy-saving strategy to support survival. At the adaptation phase, the expression profiles were recovered, indicating restoration of the processes repressed earlier. Comparison of transcriptional responses in M. smegmatis with those in other bacteria revealed unique adaptation strategies developed by mycobacteria. Our findings shed light on the molecular mechanisms underlying M. smegmatis survival under cold stress. Further research should clarify whether the discovered transcriptional mechanisms exist in other mycobacterial species, including pathogenic Mycobacterium tuberculosis, which could be important for transmission control.


Asunto(s)
Respuesta al Choque por Frío , Mycobacterium smegmatis , Mycobacterium smegmatis/genética , Respuesta al Choque por Frío/genética , Aclimatación/genética , Pared Celular , Regulación hacia Abajo
4.
RNA ; 26(7): 814-826, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32209634

RESUMEN

Bacterial ribosomal proteins (r-proteins) encoded by nonessential genes often carry out very important tasks in translation. In particular, this is the case of a small basic bacteria-specific r-protein L31 (bL31). Recent studies revealed a crucial role of bL31 in formation of the protein-protein intersubunit bridge B1b and hence its contribution to ribosome dynamics. Our goal was to study in vivo regulation of the rpmE operon encoding bL31. We used a previously developed approach based on chromosomally integrated fusions with the lacZ reporter. E. coli rpmE is transcribed from two promoter regions, and translation of both mRNA transcripts was shown to be feedback regulated by bL31, indicating that the autogenous operator is located within the shorter transcript. The bL31-mediated control of rpmE is gene-specific, as no regulation was found for rpmE-unrelated reporters. Thus, bL31, as many other r-proteins, possesses dual activity in living cells, acting both as an integral ribosome component and an autogenous repressor. Phylogenetic studies revealed the presence of a highly conserved stem-loop structure in the rpmE 5'UTR, a presumable translational operator targeted by bL31, which was further confirmed by site-directed mutagenesis. This stable operator stem-loop separates an AU-rich translational enhancer from a Shine-Dalgarno element, which is a rare case of a noncontiguous translation initiation region. Sequence/structure computational approaches classify bL31 as an RNA-binding protein, consistent with its repressor function discovered here. Mutational analysis of bL31 showed that its unstructured amino-terminal part enriched in lysine is necessary for the repressor activity.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas Ribosómicas/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/genética , Mutagénesis Sitio-Dirigida/métodos , Operón/genética , Regiones Promotoras Genéticas/genética , Biosíntesis de Proteínas/genética , Ribosomas/genética
5.
Int J Mol Sci ; 22(18)2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34575857

RESUMEN

The autogenous regulation of ribosomal protein (r-protein) synthesis plays a key role in maintaining the stoichiometry of ribosomal components in bacteria. In this work, taking the rpsO gene as a classic example, we addressed for the first time the in vivo regulation of r-protein synthesis in the mycobacteria M. smegmatis (Msm) and M. tuberculosis (Mtb). We used a strategy based on chromosomally integrated reporters under the control of the rpsO regulatory regions and the ectopic expression of Msm S15 to measure its impact on the reporter expression. Because the use of E. coli as a host appeared inefficient, a fluorescent reporter system was developed by inserting Msm or Mtb rpsO-egfp fusions into the Msm chromosome and expressing Msm S15 or E. coli S15 in trans from a novel replicative shuttle vector, pAMYC. The results of the eGFP expression measurements in Msm cells provided evidence that the rpsO gene in Msm and Mtb was feedback-regulated at the translation level. The mutagenic analysis showed that the folding of Msm rpsO 5'UTR in a pseudoknot appeared crucial for repression by both Msm S15 and E. coli S15, thus indicating a striking resemblance of the rpsO feedback control in mycobacteria and in E. coli.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Mycobacterium/fisiología , Biosíntesis de Proteínas , Proteínas Ribosómicas/biosíntesis , Secuencia de Aminoácidos , Escherichia coli/genética , Escherichia coli/metabolismo , Genes Bacterianos , Humanos , Conformación de Ácido Nucleico , Operón , Plásmidos/genética , Secuencias Reguladoras de Ácidos Nucleicos
6.
RNA ; 21(5): 851-61, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25749694

RESUMEN

Ribosomal protein (r-protein) L25 is one of the three r-proteins (L25, L5, L18) that interact with 5S rRNA in eubacteria. Specific binding of L25 with a certain domain of 5S r-RNA, a so-called loop E, has been studied in detail, but information about regulation of L25 synthesis has remained totally lacking. In contrast to the rplE (L5) and rplR (L18) genes that belong to the polycistronic spc-operon and are regulated at the translation level by r-protein S8, the rplY (L25) gene forms an independent transcription unit. The main goal of this work was to study the regulation of the rplY expression in vivo. We show that the rplY promoter is down-regulated by ppGpp and its cofactor DksA in response to amino acid starvation. At the level of translation, the rplY expression is subjected to the negative feedback control. The 5'-untranslated region of the rplY mRNA comprises specific sequence/structure features, including an atypical SD-like sequence, which are highly conserved in a subset of gamma-proteobacterial families. Despite the lack of a canonical SD element, the rplY'-'lacZ single-copy reporter showed unusually high translation efficiency. Expression of the rplY gene in trans decreased the translation yield, indicating the mechanism of autogenous repression. Site-directed mutagenesis of the rplY 5' UTR revealed an important role of the conserved elements in the translation control. Thus, the rplY expression regulation represents one more example of regulatory pathways that control ribosome biogenesis in Escherichia coli and related bacteria.


Asunto(s)
Escherichia coli/genética , Proteínas Ribosómicas/genética , Regiones no Traducidas 5' , Secuencia de Bases , Secuencia Conservada , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Regiones Promotoras Genéticas , Unión Proteica , Pirofosfatasas/metabolismo , ARN Ribosómico 5S/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo
7.
J Bacteriol ; 198(18): 2494-502, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27381917

RESUMEN

UNLABELLED: It is widely assumed that in the best-characterized model bacterium Escherichia coli, transcription units encoding ribosomal proteins (r-proteins) and regulation of their expression have been already well defined. However, transcription start sites for several E. coli r-protein operons have been established only very recently, so that information concerning the regulation of these operons at the transcriptional or posttranscriptional level is still missing. This paper describes for the first time the in vivo regulation of three r-protein operons, rplM-rpsI, rpmB-rpmG, and rplU-rpmA The results demonstrate that transcription of all three operons is subject to ppGpp/DksA-dependent negative stringent control under amino acid starvation, in parallel with the rRNA operons. By using single-copy translational fusions with the chromosomal lacZ gene, we show here that at the translation level only one of these operons, rplM-rpsI, is regulated by the mechanism of autogenous repression involving the 5' untranslated region (UTR) of the operon mRNA, while rpmB-rpmG and rplU-rpmA are not subject to this type of regulation. This may imply that translational feedback control is not a general rule for modulating the expression of E. coli r-protein operons. Finally, we report that L13, a primary protein in 50S ribosomal subunit assembly, serves as a repressor of rplM-rpsI expression in vivo, acting at a target within the rplM translation initiation region. Thus, L13 represents a novel example of regulatory r-proteins in bacteria. IMPORTANCE: It is important to obtain a deeper understanding of the regulatory mechanisms responsible for coordinated and balanced synthesis of ribosomal components. In this paper, we highlight the major role of a stringent response in regulating transcription of three previously unexplored r-protein operons, and we show that only one of them is subject to feedback regulation at the translational level. Improved knowledge of the regulatory pathways controlling ribosome biogenesis may promote the development of novel antibacterial agents.


Asunto(s)
Regulación Bacteriana de la Expresión Génica/fisiología , Operón/fisiología , Biosíntesis de Proteínas/fisiología , Proteínas Ribosómicas/metabolismo , Transcripción Genética , Escherichia coli/genética , Regulación Enzimológica de la Expresión Génica , Operón/genética , Unión Proteica , Proteínas Ribosómicas/genética , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
8.
J Bacteriol ; 195(1): 95-104, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23104805

RESUMEN

Ribosomal protein S2 is an essential component of translation machinery, and its viable mutated variants conferring distinct phenotypes serve as a valuable tool in studying the role of S2 in translation regulation. One of a few available rpsB mutants, rpsB1, shows thermosensitivity and ensures enhanced expression of leaderless mRNAs. In this study, we identified the nature of the rpsB1 mutation. Sequencing of the rpsB1 allele revealed a G-to-A transition in the part of the rpsB gene which encodes a coiled-coil domain of S2. The resulting E132K substitution resides in a highly conserved site, TKKE, a so-called N-terminal capping box, at the beginning of the second alpha helix. The protruding coiled-coil domain of S2 is known to provide binding with 16S rRNA in the head of the 30S subunit and, in addition, to interact with a key mRNA binding protein, S1. Molecular dynamics simulations revealed a detrimental impact of the E132K mutation on the coiled-coil structure and thereby on the interactions between S2 and 16S rRNA, providing a clue for the thermosensitivity of the rpsB1 mutant. Using a strain producing a leaderless lacZ transcript from the chromosomal lac promoter, we demonstrated that not only the rpsB1 mutation generating S2/S1-deficient ribosomes but also the rpsA::IS10 mutation leading to partial deficiency in S1 alone increased translation efficiency of the leaderless mRNA by about 10-fold. Moderate overexpression of S1 relieved all these effects and, moreover, suppressed the thermosensitive phenotype of rpsB1, indicating the role of S1 as an extragenic suppressor of the E132K mutation.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Mutación Missense , Proteínas Ribosómicas/metabolismo , Secuencia de Aminoácidos , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Ribosómico 16S , Proteínas Ribosómicas/genética , Especificidad de la Especie
9.
RNA ; 14(9): 1882-94, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18648071

RESUMEN

Autogenous regulation is a general strategy of balancing ribosomal protein synthesis in bacteria. Control mechanisms have been studied in detail for most of ribosomal protein operons, except for rpsB-tsf encoding essential r-protein S2 and elongation factor Ts, where even the promoter has remained unknown. By using single-copy translational fusions with the chromosomal lacZ gene and Western-blot analysis, we demonstrate here that S2 serves as a negative regulator of both rpsB and tsf expression in vivo, acting at a single target within the rpsB 5'-untranslated region (5'-UTR). As determined by primer extension, transcription of the Escherichia coli rpsB-tsf operon starts 162 nucleotides upstream of the rpsB initiation codon at a single promoter TGTGGTATAAA belonging to the extended -10 promoter class. Both the promoter signature and the 5'-UTR structure of the rpsB gene appear to be highly conserved in gamma-proteobacteria. Deletion analysis of the rpsB 5'-UTR within rpsB'-'lacZ fusions has revealed that an operator region involved in the S2 autoregulation comprises conserved structural elements located upstream of the rpsB ribosome binding site. The S2-mediated autogenous control is impaired in rpsB mutants and, more surprisingly, in the rpsA mutant producing decreased amounts of truncated r-protein S1 (rpsAIS10), indicating that S2 might act as a repressor in cooperation with S1.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Operón , Factores de Elongación de Péptidos/genética , Proteínas Ribosómicas/metabolismo , Regiones no Traducidas 5'/química , Regiones no Traducidas 5'/genética , Secuencia de Bases , Retroalimentación Fisiológica , Datos de Secuencia Molecular , Mutación , Filogenia , Regiones Promotoras Genéticas , Biosíntesis de Proteínas/genética , Proteínas Ribosómicas/genética , Sitio de Iniciación de la Transcripción , beta-Galactosidasa/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda