Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Vaccine ; 34(38): 4602-4609, 2016 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-27496278

RESUMEN

Methicillin-resistant Staphylococcus aureus (MRSA) is a rapidly growing problem, especially in hospitals where MRSA cause increased morbidity and mortality and a significant rise in health expenditures. As many strains of MRSA are resistant to other antimicrobials in addition to methicillin, there is an urgent need to institute non-antimicrobial measures, such as vaccination, against the spread of MRSA. With the aim of finding new protective antigens for vaccine development, this study used a proteome-wide in silico antigen prediction platform to screen the proteome of S. aureus strain MRSA252. Thirty-five different S. aureus proteins were identified, recombinantly expressed, and tested for protection in a lethal sepsis mouse model using S. aureus strain MRSA252 as the challenge organism. We found that 13 of the 35 recombinant peptides yielded significant protection and that 12 of these antigens were highly conserved across 70 completely sequenced S. aureus strains. Thus, this in silico platform was capable of identifying novel candidates for inclusion in future vaccines against MRSA.


Asunto(s)
Antígenos Bacterianos/inmunología , Proteoma , Infecciones Estafilocócicas/prevención & control , Vacunas Estafilocócicas/inmunología , Animales , Anticuerpos Antibacterianos/sangre , Secuencia Conservada , Femenino , Staphylococcus aureus Resistente a Meticilina , Ratones , Proteínas Recombinantes/inmunología , Programas Informáticos
2.
mBio ; 7(4)2016 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-27486187

RESUMEN

UNLABELLED: The ability to change cell morphology is an advantageous characteristic adopted by multiple pathogenic bacteria in order to evade host immune detection and assault during infection. Uropathogenic Escherichia coli (UPEC) exhibits such cellular dynamics and has been shown to transition through a series of distinct morphological phenotypes during a urinary tract infection. Here, we report the first systematic spatio-temporal gene expression analysis of the UPEC transition through these phenotypes by using a flow chamber-based in vitro infection model that simulates conditions in the bladder. This analysis revealed a novel association between the cell division gene damX and reversible UPEC filamentation. We demonstrate a lack of reversible bacterial filamentation in a damX deletion mutant in vitro and absence of a filamentous response by this mutant in a murine model of cystitis. While deletion of damX abrogated UPEC filamentation and secondary surface colonization in tissue culture and in mouse infections, transient overexpression of damX resulted in reversible UPEC filamentation. In this study, we identify a hitherto-unknown damX-mediated mechanism underlying UPEC morphotypical switching. Murine infection studies showed that DamX is essential for establishment of a robust urinary tract infection, thus emphasizing its role as a mediator of virulence. Our study demonstrates the value of an in vitro methodology, in which uroepithelium infection is closely simulated, when undertaking targeted investigations that are challenging to perform in animal infection models. IMPORTANCE: Urinary tract infections (UTIs) are most often caused by uropathogenic Escherichia coli (UPEC) and account for a considerable health care burden. UPEC exhibits a dynamic lifestyle in the course of infection, in which the bacterium transiently adopts alternative morphologies ranging from rod shaped to coccoid and filamentous, rendering it better at immune evasion and host epithelium adhesion. This penchant for morphotype switching might in large measure account for UPEC's success as a pathogen. In aiming to uncover genes underlying the phenomenon of UPEC morphotype switching, this study identifies damX, a cell division gene, as a mediator of reversible filamentation during UTI. DamX-mediated filamentation represents an additional pathway for bacterial cell shape control, an alternative to SulA-mediated FtsZ sequestration during E. coli uropathogenesis, and hence represents a potential target for combating UTI.


Asunto(s)
Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli Uropatógena/citología , Escherichia coli Uropatógena/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Animales , Línea Celular , Cistitis/microbiología , Modelos Animales de Enfermedad , Citometría de Flujo , Eliminación de Gen , Perfilación de la Expresión Génica , Humanos , Ratones Endogámicos C3H , Modelos Teóricos , Análisis Espacio-Temporal
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda