Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Small ; 20(29): e2310927, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38312083

RESUMEN

Mesoporous honeycomb iron titanate using a sol-gel, evaporation-induced self-assembly method is synthesized. A triblock copolymer, F127, serves as a structure-directing agents, with iron chloride and titanium (IV) isopropoxide as inorganic precursors. The strong intermolecular force of attraction among urea, metal precursors, and polymer led to the formation of the mesoporous honeycomb structure. The study of physicochemical properties using different techniques reveals the formation of microstructures with a remarkable degree of porosity. The amorphous iron titanate outperforms the photochemical generation of H2 due to its disorderly structural arrangement and incomplete crystal formation. The randomness on the structure provides more area for catalytic reaction by providing more contact with the reactant and superior light absorption capability. The high amount of hydrogen gas, 40.66 mmolg-1h-1, is observed in the investigation over 3 h of activity for the iron titanate honeycomb sample. This yield is a more significant amount compared to the obtained for the commercially available TiO2 (23.78 mmolg-1h-1). The iron titanate materials synthesized with low-cost materials and methods are very effective and have the potential for hydrogen generation.

2.
Chem Rec ; 24(5): e202400016, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38775239

RESUMEN

Hydrogen gas is a prominent focus in pursuing renewable and clean alternative energy sources. The quest for maximizing hydrogen production yield involves the exploration of an ideal photocatalyst and the development of a simple, cost-effective technique for its generation. Iron titanate has garnered attention in this context due to its photocatalytic properties, affordability, and non-toxic nature. Over the years, different synthesis routes, different morphologies, and some modifications of iron titanate have been carried out to improve its photocatalytic performance by enhancing light absorption in the visible region, boosting charge carrier transfer, and decreasing recombination of electrons and holes. The use of iron titanate photocatalyst for hydrogen evolution reaction has seen an upward trend in recent times, and based on available findings, more can be done to improve the performance. This review paper provides a comprehensive overview of the fundamental principles of photocatalysis for hydrogen generation, encompassing the synthesis, morphology, and application of iron titanate-based photocatalysts. The discussion delves into the limitations of current methodologies and present and future perspectives for advancing iron titanate photocatalysts. By addressing these limitations and contemplating future directions, the aim is to enhance the properties of materials fabricated for photocatalytic water splitting.

3.
Molecules ; 28(4)2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36838902

RESUMEN

Iron oxide nanoparticles (IONPs) were synthesized via a block copolymer-assisted hydrothermal method and the phase purity and the crystal structure were investigated by X-ray diffraction. The Rietveld analysis of X-ray diffractometer spectra shows the hexagonal phase symmetry of α-Fe2O3. Further, the vibrational study suggests Raman active modes: 2A1g + 5Eg associated with α-Fe2O3, which corroborates the Rietveld analysis and orbital analysis of 2PFe. The superparamagnetic behavior is confirmed by magnetic measurements performed by the physical properties measurement system. The systematic study of the Congo red (CR) interaction with IONPs using a UV-visible spectrophotometer and a liquid chromatography-tandem mass spectrometry system equipped with a triple quadrupole mass analyzer and an electrospray ionization interface shows effective adsorption. In visible light, the Fe2O3 nanoparticles get easily excited and generate electrons and holes. The photogenerated electrons reduce the Fe3+ ions to Fe2+ ions. The Fe2+/H2O2 oxidizes CR by the Fenton mechanism. The strong adsorption ability of prepared nanoparticles towards dyes attributes the potential candidates for wastewater treatment and other catalytic applications.


Asunto(s)
Rojo Congo , Nanopartículas , Peróxido de Hidrógeno , Colorantes , Polímeros , Nanopartículas Magnéticas de Óxido de Hierro
4.
Sci Rep ; 14(1): 1406, 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38228653

RESUMEN

Hydrothermal and photoreduction/deposition methods were used to fabricate Ag nanoparticles (NPs) decorated CoMoO4 rods. Improvement of charge transfer and transportation of ions by making heterostructure was proved by cyclic voltammetry and electrochemical impedance spectroscopy measurements. Linear sweep voltammetry results revealed a fivefold enhancement of current density by fabricating heterostructure. The lowest Tafel slope (112 mV/dec) for heterostructure compared with CoMoO4 (273 mV/dec) suggested the improvement of electrocatalytic performance. The electrochemical CO2 reduction reaction was performed on an H-type cell. The CoMoO4 electrocatalyst possessed the Faraday efficiencies (FEs) of CO and CH4 up to 56.80% and 19.80%, respectively at - 1.3 V versus RHE. In addition, Ag NPs decorated CoMoO4 electrocatalyst showed FEs for CO, CH4, and C2H6 were 35.30%, 11.40%, and 44.20%, respectively, at the same potential. It is found that CO2 reduction products shifted from CO/CH4 to C2H6 when the Ag NPs deposited on the CoMoO4 electrocatalyst. In addition, it demonstrated excellent electrocatalytic stability after a prolonged 25 h amperometric test at - 1.3 V versus RHE. It can be attributed to a synergistic effect between the Ag NPs and CoMoO4 rods. This study highlights the cooperation between Ag NPs on CoMoO4 components and provides new insight into the design of heterostructure as an efficient, stable catalyst towards electrocatalytic reduction of CO2 to CO, CH4, and C2H6 products.

5.
ACS Omega ; 9(38): 39863-39872, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39346825

RESUMEN

Lithium-ion batteries (LIBs) serve as the backbone of modern technologies with ongoing efforts to enhance their performance and sustainability driving the exploration of new electrode materials. This study introduces a new type of alloy-conversion-based gallium ferrite (GFO: GaFeO3) as a potential anode material for Li-ion battery applications. The GFO was synthesized by a one-step mechanochemistry-assisted solid-state method. The powder X-ray diffraction analysis confirms the presence of an orthorhombic phase with the Pc21 n space group. The photoelectron spectroscopy studies reveal the presence of Ga3+ and Fe3+ oxidation states of gallium and iron atoms in the GFO structure. The GFO was evaluated as an anode material for Li-ion battery applications, displaying a high discharge capacity of ∼887 mA h g-1 and retaining a stable capacity of ∼200 mA h g-1 over 450 cycles, with a Coulombic efficiency of 99.6 % at a current density of 100 mA g-1. Cyclic voltammetry studies confirm an alloy-conversion-based reaction mechanism in the GFO anode. Furthermore, density functional theory studies reveal the reaction mechanism during cycling and Li-ion diffusion pathways in the GFO anode. These results strongly suggest that the GFO could be an alternative anode material in LIBs.

6.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37050353

RESUMEN

A laboratory-synthesized triblock copolymer poly(ethylene oxide-b-acrylic acid-b-styrene) (PEG-PAA-PS) was used as a template to synthesize hollow BaCO3 nanoparticles (BC-NPs). The triblock copolymer was synthesized using reversible addition-fragmentation chain transfer radical polymerization. The triblock copolymer has a molecular weight of 1.88 × 104 g/mol. Transmission electron microscopy measurements confirm the formation of spherical micelles with a PEG corona, PAA shell, and PS core in an aqueous solution. Furthermore, the dynamic light scattering experiment revealed the electrostatic interaction of Ba2+ ions with an anionic poly(acrylic acid) block of the micelles. The controlled precipitation of BaCO3 around spherical polymeric micelles followed by calcination allows for the synthesis of hollow BC-NPs with cavity diameters of 15 nm and a shell thickness of 5 nm. The encapsulation and release of methotrexate from hollow BC-NPs at pH 7.4 was studied. The cell viability experiments indicate the possibility of BC-NPs maintaining biocompatibility for a prolonged time.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda