Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
1.
Annu Rev Immunol ; 28: 131-55, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-19947883

RESUMEN

Complement is an innate immune system that is a first line of defense against pathogens and facilitates elimination of apoptotic and injured cells. During complement activation, the complement convertases are assembled on target surfaces and initiate their proteolytic activities, a process that marks targets for phagocytosis and/or lysis. The complement alternative activation pathway has been implicated in a number of autoimmune conditions including arthritis and age-related macular degeneration. Properdin, a plasma component that is also released by activated neutrophils, is critical in the stabilization of alternative pathway convertases. Recently, it has been shown that properdin is also a pattern-recognition molecule that binds to certain microbial surfaces, apoptotic cells, and necrotic cells. Once bound to a surface, properdin can direct convertase formation and target uptake. New studies are now focusing on a role for properdin in inflammatory and autoimmune diseases. This review examines the new properdin findings and their implications.


Asunto(s)
Properdina/inmunología , Animales , Enfermedades Autoinmunes/inmunología , Activación de Complemento , Proteínas del Sistema Complemento/inmunología , Humanos , Inflamación/inmunología , Neutrófilos/inmunología , Properdina/química
2.
Proc Natl Acad Sci U S A ; 121(5): e2316304121, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38261617

RESUMEN

The discovery that Africans were resistant to infection by Plasmodium vivax (P. vivax) led to the conclusion that P. vivax invasion relied on the P. vivax Duffy Binding Protein (PvDBP) interacting with the Duffy Antigen Receptor for Chemokines (DARC) expressed on erythrocytes. However, the recent reporting of P. vivax infections in DARC-negative Africans suggests that the parasite might use an alternate invasion pathway to infect DARC-negative reticulocytes. To identify the parasite ligands and erythrocyte receptors that enable P. vivax invasion of both DARC-positive and -negative erythrocytes, we expressed region II containing the Duffy Binding-Like (DBL) domain of P. vivax erythrocyte binding protein (PvEBP-RII) and verified that the DBL domain binds to both DARC-positive and -negative erythrocytes. Furthermore, an AVidity-based EXtracelluar Interaction Screening (AVEXIS) was used to identify the receptor for PvEBP among over 750 human cell surface receptor proteins, and this approach identified only Complement Receptor 1 (CR1, CD35, or C3b/C4b receptor) as a PvEBP receptor. CR1 is a well-known receptor for P. falciparum Reticulocyte binding protein Homology 4 (PfRh4) and is present on the surfaces of both reticulocytes and normocytes, but its expression decreases as erythrocytes age. Indeed, PvEBP-RII bound to a subpopulation of both reticulocytes and normocytes, and this binding was blocked by the addition of soluble CR1 recombinant protein, indicating that CR1 is the receptor of PvEBP. In addition, we found that the Long Homology Repeat A (LHR-A) subdomain of CR1 is the only subdomain responsible for mediating the interaction with PvEBP-RII.


Asunto(s)
Malaria Falciparum , Plasmodium vivax , Humanos , Receptores de Superficie Celular , Eritrocitos , Reticulocitos , Antígenos CD2 , Moléculas de Adhesión Celular
3.
Immunol Rev ; 313(1): 60-63, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36089772

RESUMEN

Primitive underpinnings of the alternative pathway (AP), namely, a C3-like protein, likely arose more than a billion years ago. The development of an AP amplification loop, while greatly enhancing speed and potency, also presents a double-edged sword. Although critical to combat an infectious disease, it is also potentially destructive, particularly in a chronic disease process involving vital organs where scarring and reduction of regulatory function can occur. Furthermore, new knowledge is pointing to genetic factors involved in an increasing number of complement-related diseases such as age-related macular degeneration. However, even a normal functioning repertoire of complement components can drive cellular damage as a result of low-level complement activation over time. Thus, the modern human AP now faces a new challenge: cumulatively-driven tissue damage from chronic inflammatory processes that mediate cellular injury. The impact of ongoing low-level AP-enhanced complement activation in disease processes is just beginning to be appreciated and studied. However, the sheer numbers of individuals affected by chronic diseases emphasize the need for novel therapeutic agents capable of modulating the AP. The more we learn about this ancient system, the greater is the likelihood of developing fresh perspectives that could contribute to improved human health.


Asunto(s)
Activación de Complemento , Vía Alternativa del Complemento , Humanos , Vía Alternativa del Complemento/genética , Proteínas del Sistema Complemento/metabolismo , Inflamación
4.
Immunity ; 43(3): 463-74, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26320659

RESUMEN

TREX1 is an endoplasmic reticulum (ER)-associated negative regulator of innate immunity. TREX1 mutations are associated with autoimmune and autoinflammatory diseases. Biallelic mutations abrogating DNase activity cause autoimmunity by allowing immunogenic self-DNA to accumulate, but it is unknown how dominant frameshift (fs) mutations that encode DNase-active but mislocalized proteins cause disease. We found that the TREX1 C terminus suppressed immune activation by interacting with the ER oligosaccharyltransferase (OST) complex and stabilizing its catalytic integrity. C-terminal truncation of TREX1 by fs mutations dysregulated the OST complex, leading to free glycan release from dolichol carriers, as well as immune activation and autoantibody production. A connection between OST dysregulation and immune disorders was demonstrated in Trex1(-/-) mice, TREX1-V235fs patient lymphoblasts, and TREX1-V235fs knock-in mice. Inhibiting OST with aclacinomycin corrects the glycan and immune defects associated with Trex1 deficiency or fs mutation. This function of the TREX1 C terminus suggests a potential therapeutic option for TREX1-fs mutant-associated diseases.


Asunto(s)
Citosol/enzimología , Exodesoxirribonucleasas/metabolismo , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Fosfoproteínas/metabolismo , Aclarubicina/análogos & derivados , Aclarubicina/farmacología , Animales , Células Cultivadas , Embrión de Mamíferos/citología , Exodesoxirribonucleasas/antagonistas & inhibidores , Exodesoxirribonucleasas/genética , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Mutación del Sistema de Lectura , Células HEK293 , Células HeLa , Hexosiltransferasas/genética , Humanos , Inmunidad Innata/genética , Immunoblotting , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Microscopía Fluorescente , Fosfoproteínas/antagonistas & inhibidores , Fosfoproteínas/genética , Polisacáridos/metabolismo , Unión Proteica , Interferencia de ARN , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
J Allergy Clin Immunol ; 151(4): 1040-1049.e5, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36587848

RESUMEN

BACKGROUND: The pathogenesis of hereditary angioedema (HAE) type I and type II is linked to defective C1 esterase inhibitor (C1-INH) encoded by the SERPING1 gene. There are substantial variabilities in the clinical presentations of patients with HAE that are not directly correlated to the serum levels of C1-INH. The impact of SERPING1 variants on C1-INH expression, structure, and function is incompletely understood. OBJECTIVE: To investigate the influence of SERPING1 variants on the C1-INH expression, structure, and function of 20 patients with HAE from 14 families with no prior genetic diagnosis. METHODS: Patients underwent whole-exome sequencing (WES). If no variants were identified, whole-genome sequencing (WGS) was performed. Except for the frameshift and large deletions, each C1-INH variant was recombinantly produced and, if synthesized and secreted, was subjected to structural, oligosaccharide, and functional analyses. RESULTS: We identified 11 heterozygous variants in the SERPING1 gene, of which 5 were classified as pathogenic (E85Dfs∗63, N166Qfs∗91, K201Qfs∗56, P399A, and R466H) and 6 as variants of uncertain significance (C130W, I224S, N272del, K273del, L349F, and F471C). Three large heterozygous deletions were discovered through WGS. Our data indicate that C130W, N272del, P399A, and F471C are poorly synthesized, I224S prevents proper C1-INH folding, and K273del impairs C1-INH function by adding an additional oligosaccharide. Further evaluation suggests that compound variant P399A/L349F contributes to a more severe clinical phenotype. CONCLUSIONS: Our combined approach of WES and WGS uncovered SERPING1 gene alternations in each patient. The recombinant protein production followed by systematic antigenic, structural, and functional assessment facilitates the identification of underlying pathogenic mechanisms in HAE.


Asunto(s)
Angioedemas Hereditarios , Proteína Inhibidora del Complemento C1 , Humanos , Proteína Inhibidora del Complemento C1/genética , Angioedemas Hereditarios/genética , Angioedemas Hereditarios/diagnóstico , Mutación del Sistema de Lectura , Fenotipo , Heterocigoto
6.
J Virol ; 96(3): e0082621, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-34787457

RESUMEN

Human adenovirus serotype 26 (Ad26) is used as a gene-based vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and HIV-1. However, its primary receptor portfolio remains controversial, potentially including sialic acid, coxsackie and adenovirus receptor (CAR), integrins, and CD46. We and others have shown that Ad26 can use CD46, but these observations were questioned on the basis of the inability to cocrystallize Ad26 fiber with CD46. Recent work demonstrated that Ad26 binds CD46 with its hexon protein rather than its fiber. We examined the functional consequences of Ad26 for infection in vitro and in vivo. Ectopic expression of human CD46 on Chinese hamster ovary cells increased Ad26 infection significantly. Deletion of the complement control protein domain CCP1 or CCP2 or the serine-threonine-proline (STP) region of CD46 reduced infection. Comparing wild-type and sialic acid-deficient CHO cells, we show that the usage of CD46 is independent of its sialylation status. Ad26 transduction was increased in CD46 transgenic mice after intramuscular (i.m.) injection but not after intranasal (i.n.) administration. Ad26 transduction was 10-fold lower than Ad5 transduction after intratumoral (i.t.) injection of CD46-expressing tumors. Ad26 transduction of liver was 1,000-fold lower than that ofAd5 after intravenous (i.v.) injection. These data demonstrate the use of CD46 by Ad26 in certain situations but also show that the receptor has little consequence by other routes of administration. Finally, i.v. injection of high doses of Ad26 into CD46 mice induced release of liver enzymes into the bloodstream and reduced white blood cell counts but did not induce thrombocytopenia. This suggests that Ad26 virions do not induce direct clotting side effects seen during coronavirus disease 2019 (COVID-19) vaccination with this serotype of adenovirus. IMPORTANCE The human species D Ad26 is being investigated as a low-seroprevalence vector for oncolytic virotherapy and gene-based vaccination against HIV-1 and SARS-CoV-2. However, there is debate in the literature about its tropism and receptor utilization, which directly influence its efficiency for certain applications. This work was aimed at determining which receptor(s) this virus uses for infection and its role in virus biology, vaccine efficacy, and, importantly, vaccine safety.


Asunto(s)
Infecciones por Adenovirus Humanos/metabolismo , Infecciones por Adenovirus Humanos/virología , Adenovirus Humanos/clasificación , Adenovirus Humanos/fisiología , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/metabolismo , Interacciones Huésped-Patógeno , Proteína Cofactora de Membrana/metabolismo , Adenovirus Humanos/ultraestructura , Animales , Biomarcadores , Recuento de Células Sanguíneas , Células CHO , Línea Celular , Proteína de la Membrana Similar al Receptor de Coxsackie y Adenovirus/química , Cricetulus , Modelos Animales de Enfermedad , Expresión Génica , Humanos , Proteína Cofactora de Membrana/química , Proteína Cofactora de Membrana/genética , Ratones Transgénicos , Modelos Biológicos , Modelos Moleculares , Mutagénesis , Unión Proteica , Conformación Proteica , Serogrupo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacología , Relación Estructura-Actividad
7.
J Autoimmun ; 137: 102979, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36535812

RESUMEN

Genetic deficiencies of early components of the classical complement activation pathway (especially C1q, r, s, and C4) are the strongest monogenic causal factors for the prototypic autoimmune disease systemic lupus erythematosus (SLE), but their prevalence is extremely rare. In contrast, isotype genetic deficiency of C4A and acquired deficiency of C1q by autoantibodies are frequent among patients with SLE. Here we review the genetic basis of complement deficiencies in autoimmune disease, discuss the complex genetic diversity seen in complement C4 and its association with autoimmune disease, provide guidance as to when clinicians should suspect and test for complement deficiencies, and outline the current understanding of the mechanisms relating complement deficiencies to autoimmunity. We focus primarily on SLE, as the role of complement in SLE is well-established, but will also discuss other informative diseases such as inflammatory arthritis and myositis.


Asunto(s)
Enfermedades Autoinmunes , Lupus Eritematoso Sistémico , Humanos , Complemento C1q/genética , Enfermedades Autoinmunes/genética , Enfermedades Autoinmunes/complicaciones , Proteínas del Sistema Complemento/genética , Enfermedades por Deficiencia de Complemento Hereditario/complicaciones , Complemento C4/genética , Complemento C4a/genética
8.
BJOG ; 130(12): 1473-1482, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37156755

RESUMEN

OBJECTIVE: The objective of the study was to investigate the role of genetic variants in complement proteins in pre-eclampsia. DESIGN: In a case-control study involving 609 cases and 2092 controls, five rare variants in complement factor H (CFH) were identified in women with severe and complicated pre-eclampsia. No variants were identified in controls. SETTING: Pre-eclampsia is a leading cause of maternal and fetal morbidity and mortality. Immune maladaptation, in particular, complement activation that disrupts maternal-fetal tolerance leading to placental dysfunction and endothelial injury, has been proposed as a pathogenetic mechanism, but this remains unproven. POPULATION: We genotyped 609 pre-eclampsia cases and 2092 controls from FINNPEC and the national FINRISK cohorts. METHODS: Complement-based functional and structural assays were conducted in vitro to define the significance of these five missense variants and each compared with wild type. MAIN OUTCOME MEASURES: Secretion, expression and ability to regulate complement activation were assessed for factor H proteins harbouring the mutations. RESULTS: We identified five heterozygous rare variants in complement factor H (L3V, R127H, R166Q, C1077S and N1176K) in seven women with severe pre-eclampsia. These variants were not identified in controls. Variants C1077S and N1176K were novel. Antigenic, functional and structural analyses established that four (R127H, R166Q, C1077S and N1176K) were deleterious. Variants R127H and C1077S were synthesised, but not secreted. Variants R166Q and N1176K were secreted normally but showed reduced binding to C3b and consequently defective complement regulatory activity. No defect was identified for L3V. CONCLUSIONS: These results suggest that complement dysregulation due to mutations in complement factor H is among the pathophysiological mechanisms underlying severe pre-eclampsia.


Asunto(s)
Factor H de Complemento , Preeclampsia , Humanos , Embarazo , Femenino , Factor H de Complemento/genética , Factor H de Complemento/metabolismo , Estudios de Casos y Controles , Placenta/metabolismo , Preeclampsia/genética , Genotipo
9.
Nat Immunol ; 11(9): 862-71, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20694009

RESUMEN

In this study we demonstrate a new form of immunoregulation: engagement on CD4(+) T cells of the complement regulator CD46 promoted the effector potential of T helper type 1 cells (T(H)1 cells), but as interleukin 2 (IL-2) accumulated, it switched cells toward a regulatory phenotype, attenuating IL-2 production via the transcriptional regulator ICER/CREM and upregulating IL-10 after interaction of the CD46 tail with the serine-threonine kinase SPAK. Activated CD4(+) T cells produced CD46 ligands, and blocking CD46 inhibited IL-10 production. Furthermore, CD4(+) T cells in rheumatoid arthritis failed to switch, consequently producing excessive interferon-gamma (IFN-gamma). Finally, gammadelta T cells, which rarely produce IL-10, expressed an alternative CD46 isoform and were unable to switch. Nonetheless, coengagement of T cell antigen receptor (TCR) gammadelta and CD46 suppressed effector cytokine production, establishing that CD46 uses distinct mechanisms to regulate different T cell subsets during an immune response.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Citocinas/inmunología , Regulación de la Expresión Génica , Proteína Cofactora de Membrana/inmunología , Animales , Anticuerpos Monoclonales/farmacología , Linfocitos T CD4-Positivos/efectos de los fármacos , Células CHO , Células Cultivadas , Enzimas Activadoras de Complemento/inmunología , Cricetinae , Cricetulus , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Interleucina-10/inmunología , Interleucina-2/inmunología , Células Jurkat , Linfocitos T Colaboradores-Inductores/inmunología
10.
Immunity ; 39(6): 1143-57, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24315997

RESUMEN

Complement is viewed as a critical serum-operative component of innate immunity, with processing of its key component, C3, into activation fragments C3a and C3b confined to the extracellular space. We report here that C3 activation also occurred intracellularly. We found that the T cell-expressed protease cathepsin L (CTSL) processed C3 into biologically active C3a and C3b. Resting T cells contained stores of endosomal and lysosomal C3 and CTSL and substantial amounts of CTSL-generated C3a. While "tonic" intracellular C3a generation was required for homeostatic T cell survival, shuttling of this intracellular C3-activation-system to the cell surface upon T cell stimulation induced autocrine proinflammatory cytokine production. Furthermore, T cells from patients with autoimmune arthritis demonstrated hyperactive intracellular complement activation and interferon-γ production and CTSL inhibition corrected this deregulated phenotype. Importantly, intracellular C3a was observed in all examined cell populations, suggesting that intracellular complement activation might be of broad physiological significance.


Asunto(s)
Subgrupos de Linfocitos B/citología , Linfocitos T CD4-Positivos/inmunología , Catepsina L/metabolismo , Diferenciación Celular , Activación de Complemento/fisiología , Complemento C3/metabolismo , Homeostasis/fisiología , Adulto , Artritis Reumatoide/inmunología , Linfocitos T CD4-Positivos/metabolismo , Línea Celular , Supervivencia Celular/inmunología , Niño , Complemento C3/inmunología , Complemento C3a/metabolismo , Complemento C3b/metabolismo , Regulación de la Expresión Génica/inmunología , Humanos
11.
J Biol Chem ; 294(13): 4878-4888, 2019 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-30670593

RESUMEN

ER protein 57 (ERp57), a thiol isomerase secreted from vascular cells, is essential for complete thrombus formation in vivo, but other extracellular ERp57 functions remain unexplored. Here, we employed a kinetic substrate-trapping approach to identify extracellular protein substrates of ERp57 in platelet-rich plasma. MS-based identification with immunochemical confirmation combined with gene ontology enrichment analysis revealed that ERp57 targets, among other substrates, components of the lectin pathway of complement activation: mannose-binding lectin, ficolin-2, ficolin-3, collectin-10, collectin-11, mannose-binding lectin-associated serine protease-1, and mannose-binding lectin-associated serine protease-2. Ficolin-3, the most abundant lectin pathway initiator in humans, circulates as disulfide-linked multimers of a monomer. ERp57 attenuated ficolin-3 ligand recognition and complement activation by cleaving intermolecular disulfide bonds in large ficolin-3 multimers, thereby reducing multimer size and ligand-binding affinity. We used MS to identify the disulfide-bonding pattern in ficolin-3 multimers and the disulfide bonds targeted by ERp57 and found that Cys6 and Cys23 in the N-terminal region of ficolin-3 form the intermolecular disulfide bonds in ficolin-3 multimers that are reduced by ERp57. Our results not only demonstrate that ERp57 can negatively regulate complement activation, but also identify a control mechanism for lectin pathway initiation in the vasculature. We conclude that extensive multimerization in large ficolin-3 multimers leads to a high affinity for ligands and strong complement-activating potential and that ERp57 suppresses complement activation by cleaving disulfide bonds in ficolin-3 and reducing its multimer size.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento , Glicoproteínas/metabolismo , Lectinas/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Multimerización de Proteína , Proteolisis , Glicoproteínas/genética , Humanos , Lectinas/genética , Proteína Disulfuro Isomerasas/genética
12.
EMBO J ; 35(10): 1133-49, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27013439

RESUMEN

Regulators of complement activation (RCA) inhibit complement-induced immune responses on healthy host tissues. We present crystal structures of human RCA (MCP, DAF, and CR1) and a smallpox virus homolog (SPICE) bound to complement component C3b. Our structural data reveal that up to four consecutive homologous CCP domains (i-iv), responsible for inhibition, bind in the same orientation and extended arrangement at a shared binding platform on C3b. Large sequence variations in CCP domains explain the diverse C3b-binding patterns, with limited or no contribution of some individual domains, while all regulators show extensive contacts with C3b for the domains at the third site. A variation of ~100° rotation around the longitudinal axis is observed for domains binding at the fourth site on C3b, without affecting the overall binding mode. The data suggest a common evolutionary origin for both inhibitory mechanisms, called decay acceleration and cofactor activity, with variable C3b binding through domains at sites ii, iii, and iv, and provide a framework for understanding RCA disease-related mutations and immune evasion.


Asunto(s)
Complemento C3b/química , Complemento C3b/metabolismo , Sitios de Unión , Antígenos CD55/química , Antígenos CD55/metabolismo , Activación de Complemento , Humanos , Proteína Cofactora de Membrana/química , Proteína Cofactora de Membrana/metabolismo , Dominios Proteicos , Receptores de Complemento 3b/química , Receptores de Complemento 3b/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo
13.
J Immunol ; 200(8): 2786-2797, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29531168

RESUMEN

Factor D (FD) is an essential component of the complement alternative pathway (AP). It is an attractive pharmaceutical target because it is an AP-specific protease circulating in blood. Most components of the complement activation pathways are produced by the liver, but FD is highly expressed by adipose tissue. Two critical questions are: 1) to what degree does adipose tissue contribute to circulating FD levels and 2) what quantity of FD is sufficient to maintain a functional AP? To address these issues, we studied a novel mouse strain with complete lipodystrophy (LD), the fld mouse with partial LD, an FD-deficient mouse, and samples from lipodystrophic patients. FD was undetectable in the serum of LD mice, which also showed minimal AP function. Reconstitution with purified FD, serum mixing experiments, and studies of partial LD mice all demonstrated that a low level of serum FD is sufficient for normal AP activity in the mouse system. This conclusion was further supported by experiments in which wild-type adipose precursors were transplanted into LD mice. Our results indicate that almost all FD in mouse serum is derived from adipose tissue. In contrast, FD levels were reduced ∼50% in the sera of patients with congenital generalized LD. Our studies further demonstrate that a relatively small amount of serum FD is sufficient to facilitate significant time-dependent AP activity in humans and in mice. Furthermore, this observation highlights the potential importance of obtaining nearly complete inhibition of FD in treating alternative complement activation in various autoimmune and inflammatory human diseases.


Asunto(s)
Tejido Adiposo/metabolismo , Factor D del Complemento/metabolismo , Lipodistrofia/sangre , Animales , Factor D del Complemento/análisis , Humanos , Ratones
14.
Immunol Rev ; 274(1): 9-15, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27782327

RESUMEN

The complement system is an evolutionarily ancient component of immunity that revolves around the central component C3. With the recent description of intracellular C3 stores in many types of human cells, our view of the complement system has expanded. In this article, we hypothesize that a primitive version of C3 comprised the first element of the original complement system and initially functioned intracellularly and on the membrane of single-celled organisms. With increasing specialization and multicellularity, C3 evolved a secretory capacity that allowed it to play a protective role in the interstitial space. Upon development of a pumped circulatory system, C3 was synthesized in large amounts and secreted by the liver to protect the intravascular space. Recent discoveries of intracellular C3 activation, a C3-based recycling pathway and C3 being a driver and programmer of cell metabolism suggest that the complement system utilizes C3 to guard not only extracellular but also the intracellular environment. We predict that the major functions of C3 in all four locations (i.e. intracellular, membrane, interstitium and circulation) are similar: opsonization, membrane perturbation, triggering inflammation, and metabolic reprogramming.


Asunto(s)
Evolución Biológica , Vasos Sanguíneos/fisiología , Complemento C3/inmunología , Inflamación/inmunología , Hígado/fisiología , Animales , Membrana Celular/metabolismo , Activación de Complemento , Espacio Extracelular , Humanos , Inmunidad , Espacio Intracelular , Modelos Inmunológicos
15.
Am J Respir Cell Mol Biol ; 60(2): 144-157, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30156437

RESUMEN

The complement system provides host defense against pathogens and environmental stress. C3, the central component of complement, is present in the blood and increases in BAL fluid after injury. We recently discovered that C3 is taken up by certain cell types and cleaved intracellularly to C3a and C3b. C3a is required for CD4+ T-cell survival. These observations made us question whether complement operates at environmental interfaces, particularly in the respiratory tract. We found that airway epithelial cells (AECs, represented by both primary human tracheobronchial cells and BEAS-2B [cell line]) cultured in C3-free media were unique from other cell types in that they contained large intracellular stores of de novo synthesized C3. A fraction of this protein reduced ("storage form") but the remainder did not, consistent with it being pro-C3 ("precursor form"). These two forms of intracellular C3 were absent in CRISPR knockout-induced C3-deficient AECs and decreased with the use of C3 siRNA, indicating endogenous generation. Proinflammatory cytokine exposure increased both stored and secreted forms of C3. Furthermore, AECs took up C3 from exogenous sources, which mitigated stress-associated cell death (e.g., from oxidative stress or starvation). C3 stores were notably increased within AECs in lung tissues from individuals with different end-stage lung diseases. Thus, at-risk cells furnish C3 through biosynthesis and/or uptake to increase locally available C3 during inflammation, while intracellularly, these stores protect against certain inducers of cell death. These results establish the relevance of intracellular C3 to airway epithelial biology and suggest novel pathways for complement-mediated host protection in the airway.


Asunto(s)
Bronquios/citología , Complemento C3/metabolismo , Células Epiteliales/fisiología , Muerte Celular , Línea Celular , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Complemento C3/genética , Células Epiteliales/citología , Células Epiteliales/efectos de los fármacos , Células Caliciformes/metabolismo , Humanos , Peróxido de Hidrógeno/farmacología , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Estrés Fisiológico
16.
J Immunol ; 197(10): 4053-4065, 2016 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-27798151

RESUMEN

Flavivirus nonstructural protein 1 (NS1) is a unique secreted nonstructural glycoprotein. Although it is absent from the flavivirus virion, intracellular and extracellular forms of NS1 have essential roles in viral replication and the pathogenesis of infection. The fate of NS1 in insect cells has been more controversial, with some reports suggesting it is exclusively cell associated. In this study, we confirm NS1 secretion from cells of insect origin and characterize its physical, biochemical, and functional properties in the context of dengue virus (DENV) infection. Unlike mammalian cell-derived NS1, which displays both high mannose and complex type N-linked glycans, soluble NS1 secreted from DENV-infected insect cells contains only high mannose glycans. Insect cell-derived secreted NS1 also has different physical properties, including smaller and more heterogeneous sizes and the formation of less stable NS1 hexamers. Both mammalian and insect cell-derived NS1 bind to complement proteins C1s, C4, and C4-binding protein, as well as to a novel partner, mannose-binding lectin. Binding of NS1 to MBL protects DENV against mannose-binding lectin-mediated neutralization by the lectin pathway of complement activation. As we detected secreted NS1 and DENV together in the saliva of infected Aedes aegypti mosquitoes, these findings suggest a mechanism of viral immune evasion at the very earliest phase of infection.


Asunto(s)
Lectina de Unión a Manosa de la Vía del Complemento , Virus del Dengue/inmunología , Evasión Inmune , Lectina de Unión a Manosa/inmunología , Lectina de Unión a Manosa/metabolismo , Proteínas no Estructurales Virales/metabolismo , Aedes/virología , Animales , Línea Celular , Activación de Complemento , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Virus del Dengue/patogenicidad , Humanos , Unión Proteica , Saliva/virología , Porcinos , Proteínas no Estructurales Virales/química
17.
Nat Rev Immunol ; 7(1): 9-18, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17170757

RESUMEN

The complement system was traditionally known as an effector arm of humoral immunity. Today we also recognize it as a main element of the innate immune system. In blood and other body fluids complement is a first line of defence against pathogens, because it becomes fully active within seconds. Active complement fragments attach to the invading pathogen to promote opsonization and lysis, triggering a local inflammatory response. This Review focuses on the evolving role of the complement system in the regulation of T-cell responses, from directing the initiation phase, through driving lineage commitment, to regulating the contraction phase.


Asunto(s)
Activación de Complemento/inmunología , Inmunidad Innata , Activación de Linfocitos/inmunología , Linfocitos T/inmunología , Animales , Proteínas del Sistema Complemento/inmunología , Humanos
18.
Hum Mol Genet ; 24(13): 3861-70, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-25788521

RESUMEN

To assess a potential diagnostic and therapeutic biomarker for age-related macular degeneration (AMD), we sequenced the complement factor I gene (CFI) in 2266 individuals with AMD and 1400 without, identifying 231 individuals with rare genetic variants. We evaluated the functional impact by measuring circulating serum factor I (FI) protein levels in individuals with and without rare CFI variants. The burden of very rare (frequency <1/1000) variants in CFI was strongly associated with disease (P = 1.1 × 10(-8)). In addition, we examined eight coding variants with counts ≥5 and saw evidence for association with AMD in three variants. Individuals with advanced AMD carrying a rare CFI variant had lower mean FI compared with non-AMD subjects carrying a variant (P < 0.001). Further new evidence that FI levels drive AMD risk comes from analyses showing individuals with a CFI rare variant and low FI were more likely to have advanced AMD (P = 5.6 × 10(-5)). Controlling for covariates, low FI increased the risk of advanced AMD among those with a variant compared with individuals without advanced AMD with a rare CFI variant (OR 13.6, P = 1.6 × 10(-4)), and also compared with control individuals without a rare CFI variant (OR 19.0, P = 1.1 × 10(-5)). Thus, low FI levels are strongly associated with rare CFI variants and AMD. Enhancing FI activity may be therapeutic and measuring FI provides a screening tool for identifying patients who are most likely to benefit from complement inhibitory therapy.


Asunto(s)
Factor I de Complemento/genética , Fibrinógeno/metabolismo , Degeneración Macular/genética , Factor I de Complemento/metabolismo , Femenino , Variación Genética , Humanos , Degeneración Macular/metabolismo , Degeneración Macular/patología , Masculino
19.
Am J Pathol ; 186(8): 2088-2104, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27295359

RESUMEN

In the mouse, membrane cofactor protein (CD46), a key regulator of the alternative pathway of the complement system, is only expressed in the eye and on the inner acrosomal membrane of spermatozoa. We noted that although Cd46(-/-) mice have normal systemic alternative pathway activating ability, lack of CD46 leads to dysregulated complement activation in the eye, as evidenced by increased deposition of C5b-9 in the retinal pigment epithelium (RPE) and choroid. A knockout of CD46 induced the following cardinal features of human dry age-related macular degeneration (AMD) in 12-month-old male and female mice: accumulation of autofluorescent material in and hypertrophy of the RPE, dense deposits in and thickening of Bruch's membrane, loss of photoreceptors, cells in subretinal space, and a reduction of choroidal vessels. Collectively, our results demonstrate spontaneous age-related degenerative changes in the retina, RPE, and choroid of Cd46(-/-) mice that are consistent with human dry AMD. These findings provide the exciting possibility of using Cd46(-/-) mice as a convenient and reliable animal model for dry AMD. Having such a relatively straight-forward model for dry AMD should provide valuable insights into pathogenesis and a test model system for novel drug targets. More important, tissue-specific expression of CD46 gives the Cd46(-/-) mouse model of dry AMD a unique advantage over other mouse models using knockout strains.


Asunto(s)
Modelos Animales de Enfermedad , Atrofia Geográfica/genética , Degeneración Macular/genética , Proteína Cofactora de Membrana/deficiencia , Animales , Western Blotting , Femenino , Atrofia Geográfica/patología , Degeneración Macular/patología , Masculino , Proteína Cofactora de Membrana/genética , Ratones , Ratones Noqueados
20.
J Autoimmun ; 81: 13-23, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28325644

RESUMEN

TREX1/DNASE III, the most abundant 3'-5' DNA exonuclease in mammalian cells, is tail-anchored on the endoplasmic reticulum (ER). Mutations at the N-terminus affecting TREX1 DNase activity are associated with autoimmune and inflammatory conditions such as Aicardi-Goutières syndrome (AGS). Mutations in the C-terminus of TREX1 cause loss of localization to the ER and dysregulation of oligosaccharyltransferase (OST) activity, and are associated with retinal vasculopathy with cerebral leukodystrophy (RVCL) and in some cases with systemic lupus erythematosus (SLE). Here we investigate mice with conditional expression of the most common RVCL mutation, V235fs, and another mouse expressing a conditional C-terminal mutation, D272fs, associated with a case of human SLE. Mice homozygous for either mutant allele express the encoded human TREX1 truncations without endogenous mouse TREX1, and both remain DNase active in tissues. The two mouse strains are similar phenotypically without major signs of retinal, cerebral or renal disease but exhibit striking elevations of autoantibodies in the serum. The broad range of autoantibodies is primarily against non-nuclear antigens, in sharp contrast to the predominantly DNA-related autoantibodies produced by a TREX1-D18N mouse that specifically lacks DNase activity. We also found that treatment with an OST inhibitor, aclacinomycin, rapidly suppressed autoantibody production in the TREX1 frame-shift mutant mice. Together, our study presents two new mouse models based on TREX1 frame-shift mutations with a unique set of serologic autoimmune-like phenotypes.


Asunto(s)
Autoinmunidad/genética , Autoinmunidad/inmunología , Exodesoxirribonucleasas/genética , Mutación del Sistema de Lectura , Fosfoproteínas/genética , Aclarubicina/análogos & derivados , Aclarubicina/farmacología , Sustitución de Aminoácidos , Animales , Apoptosis/genética , Apoptosis/inmunología , Autoanticuerpos/inmunología , Autoinmunidad/efectos de los fármacos , Linfocitos B/inmunología , Linfocitos B/metabolismo , Activación Enzimática , Exodesoxirribonucleasas/química , Exodesoxirribonucleasas/metabolismo , Expresión Génica , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Humanos , Ratones , Ratones Transgénicos , Fenotipo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Retina/inmunología , Retina/metabolismo , Retina/patología , Timocitos/inmunología , Timocitos/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda