Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Neurosci ; 43(13): 2260-2276, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36801823

RESUMEN

Glia are essential to protecting and enabling nervous system function and a key glial function is the formation of the glial sheath around peripheral axons. Each peripheral nerve in the Drosophila larva is ensheathed by three glial layers, which structurally support and insulate the peripheral axons. How peripheral glia communicate with each other and between layers is not well established and we investigated the role of Innexins in mediating glial function in the Drosophila periphery. Of the eight Drosophila Innexins, we found two (Inx1 and Inx2) are important for peripheral glia development. In particular loss of Inx1 and Inx2 resulted in defects in the wrapping glia leading to disruption of the glia wrap. Of interest loss of Inx2 in the subperineurial glia also resulted in defects in the neighboring wrapping glia. Inx plaques were observed between the subperineurial glia and the wrapping glia suggesting that gap junctions link these two glial cell types. We found Inx2 is key to Ca2+ pulses in the peripheral subperineurial glia but not in the wrapping glia, and we found no evidence of gap junction communication between subperineurial and wrapping glia. Rather we have clear evidence that Inx2 plays an adhesive and channel-independent role between the subperineurial and wrapping glia to ensure the integrity of the glial wrap.SIGNIFICANCE STATEMENT Gap junctions are critical for glia communication and formation of myelin in myelinating glia. However, the role of gap junctions in non-myelinating glia is not well studied, yet non-myelinating glia are critical for peripheral nerve function. We found the Innexin gap junction proteins are present between different classes of peripheral glia in Drosophila. Here Innexins form junctions to facilitate adhesion between the different glia but do so in a channel-independent manner. Loss of adhesion leads to disruption of the glial wrap around axons and leads to fragmentation of the wrapping glia membranes. Our work points to an important role for gap junction proteins in mediating insulation by non-myelinating glia.


Asunto(s)
Proteínas de Drosophila , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Neuroglía/metabolismo , Sistema Nervioso Periférico/metabolismo , Drosophila/metabolismo , Axones/metabolismo , Conexinas/genética , Conexinas/metabolismo
2.
Development ; 146(18)2019 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-31444218

RESUMEN

Junctional complexes that mediate cell adhesion are key to epithelial integrity, cell division and permeability barrier formation. In Drosophila, the scaffolding proteins Scribble (Scrib) and Discs Large (Dlg) are key regulators of epithelial polarity, proliferation, assembly of junctions and protein trafficking. We found that Scrib and Dlg are necessary for the formation of the tricellular junction (TCJ), a unique junction that forms in epithelia at the point of convergence of three neighboring cells. Scrib and Dlg are in close proximity with the TCJ proteins Gliotactin (Gli) and Bark Beetle (Bark), and both are required for TCJ protein recruitment. Loss of Bark or Gli led to basolateral spread of the TCJ complex at the cell corners. Loss of the septate junction proteins Nrx-IV and the Na+/K+ ATPase also resulted in basolateral spread of the entire TCJ complex at the cell corners. The Scrib PDZ1-2 domains and the Dlg GUK domain are necessary for Bark and Gli localization to the TCJ. Overall, we propose a model in which Scrib and Dlg are key components of the TCJ, and form a complex with Bark and Gli.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Drosophila melanogaster/metabolismo , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Proteínas de Drosophila/química , Técnicas de Silenciamiento del Gen , Proteínas de la Membrana/química , Dominios Proteicos
3.
J Neurosci ; 40(17): 3360-3373, 2020 04 22.
Artículo en Inglés | MEDLINE | ID: mdl-32265259

RESUMEN

The Drosophila nervous system is ensheathed by a layer of outer glial cells, the perineurial glia, and a specialized extracellular matrix, the neural lamella. The function of perineurial glial cells and how they interact with the extracellular matrix are just beginning to be elucidated. Integrin-based focal adhesion complexes link the glial membrane to the extracellular matrix, but little is known about integrin's regulators in the glia. The transmembrane Ig domain protein Basigin/CD147/EMMPRIN is highly expressed in the perineurial glia surrounding the Drosophila larval nervous system. Here we show that Basigin associates with integrin at the focal adhesions to uphold the structure of the glia-extracellular matrix sheath. Knockdown of Basigin in perineurial glia using RNAi results in significant shortening of the ventral nerve cord, compression of the glia and extracellular matrix in the peripheral nerves, and reduction in larval locomotion. We determined that Basigin is expressed in close proximity to integrin at the glial membrane, and that expression of the extracellular integrin-binding domain of Basigin is sufficient to rescue peripheral glial compression. We also found that a reduction in expression of integrin at the membrane rescues the ventral nerve cord shortening, peripheral glial compression, and locomotor phenotypes, and that reduction in the integrin-binding protein Talin can partially rescue glial compression. These results identify Basigin as a potential negative regulator of integrin in the glia, supporting proper glial and extracellular matrix ensheathment of the nervous system.SIGNIFICANCE STATEMENT The glial cells and extracellular matrix play important roles in supporting and protecting the nervous system, but the interactions between these components have not been well characterized. Our study identified expression of a conserved Ig superfamily protein, Basigin, at the glial membrane of Drosophila where it associates with the integrin-based focal adhesion complexes to ensure proper ensheathment of the CNS and PNS. Loss of Basigin in the glia results in an overall compression of the nervous system due to integrin dysregulation, which causes locomotor defects in the animals. This underlies the importance of glia-matrix communication for structural and functional support of the nervous system.


Asunto(s)
Proteínas de Drosophila/metabolismo , Integrinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Neuroglía/metabolismo , Nervios Periféricos/metabolismo , Animales , Adhesión Celular/fisiología , Drosophila melanogaster , Matriz Extracelular/metabolismo , Larva/metabolismo , Locomoción/fisiología , Neuroglía/citología , Nervios Periféricos/citología , Interferencia de ARN
4.
Genome ; 64(2): 97-108, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33064024

RESUMEN

Epithelial junctions ensure cell-cell adhesion and establish permeability barriers between cells. At the corners of epithelia, the tricellular junction (TCJ) is formed by three adjacent epithelial cells and generates a functional barrier. In Drosophila, a key TCJ protein is Gliotactin (Gli) where loss of Gli disrupts barrier formation and function. Conversely, overexpressed Gli spreads away from the TCJ and triggers apoptosis, delamination, and cell migration. Thus, Gli protein levels are tightly regulated and by two mechanisms, at the protein levels by tyrosine phosphorylation and endocytosis and at the mRNA level through microRNA-184. Regulation of Gli mRNA is mediated through a Gli-BMP-miR184 feedback loop. Excessive Gli triggers BMP signaling pathway through the activation of Tkv type-I BMP receptor and Mad. Elevated level of pMad induces micrRNA-184 expression which in turn targets the Gli 3'UTR and mRNA degradation. Gli activation of Tkv is not through its ligand Dpp but rather through the inhibition of Dad, an inhibitory-Smad. Here, we show that ectopic expression of Gli interferes with Tkv-Dad association by sequestering Dad away from Tkv. The reduced inhibitory effect of Dad on Tkv results in the increased Tkv-pMad signaling activity, and this effect is continuous through larval and pupal wing formation.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila , Proteínas de la Membrana , MicroARNs , Proteínas del Tejido Nervioso , Transducción de Señal , Animales , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas , ARN Mensajero , Receptores de Superficie Celular
5.
J Cell Sci ; 129(7): 1477-89, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-26906422

RESUMEN

Epithelial bicellular and tricellular junctions are essential for establishing and maintaining permeability barriers. Tricellular junctions are formed by the convergence of three bicellular junctions at the corners of neighbouring epithelia. Gliotactin, a member of the Neuroligin family, is located at theDrosophilatricellular junction, and is crucial for the formation of tricellular and septate junctions, as well as permeability barrier function. Gliotactin protein levels are tightly controlled by phosphorylation at tyrosine residues and endocytosis. Blocking endocytosis or overexpressing Gliotactin results in the spread of Gliotactin from the tricellular junction, resulting in apoptosis, delamination and migration of epithelial cells. We show that Gliotactin levels are also regulated at the mRNA level by micro (mi)RNA-mediated degradation and that miRNAs are targeted to a short region in the 3'UTR that includes a conserved miR-184 target site. miR-184 also targets a suite of septate junction proteins, including NrxIV, coracle and Mcr. miR-184 expression is triggered when Gliotactin is overexpressed, leading to activation of the BMP signalling pathway. Gliotactin specifically interferes with Dad, an inhibitory SMAD, leading to activation of the Tkv type-I receptor and activation of Mad to elevate the biogenesis and expression of miR-184.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas de la Membrana/metabolismo , MicroARNs/biosíntesis , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo , Animales , Apoptosis/fisiología , Movimiento Celular/fisiología , Citocinas/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Endocitosis/fisiología , Activación Enzimática , Proteínas de la Membrana/genética , MicroARNs/genética , Proteínas del Tejido Nervioso/genética , Serpinas/metabolismo , Transducción de Señal/genética , Uniones Estrechas/fisiología
6.
PLoS Pathog ; 12(8): e1005789, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27537218

RESUMEN

Cervical cancer is one of the leading causes of cancer death in women worldwide. The causative agents of cervical cancers, high-risk human papillomaviruses (HPVs), cause cancer through the action of two oncoproteins, E6 and E7. The E6 oncoprotein cooperates with an E3 ubiquitin ligase (UBE3A) to target the p53 tumour suppressor and important polarity and junctional PDZ proteins for proteasomal degradation, activities that are believed to contribute towards malignancy. However, the causative link between degradation of PDZ proteins and E6-mediated malignancy is largely unknown. We have developed an in vivo model of HPV E6-mediated cellular transformation using the genetic model organism, Drosophila melanogaster. Co-expression of E6 and human UBE3A in wing and eye epithelia results in severe morphological abnormalities. Furthermore, E6, via its PDZ-binding motif and in cooperation with UBE3A, targets a suite of PDZ proteins that are conserved in human and Drosophila, including Magi, Dlg and Scribble. Similar to human epithelia, Drosophila Magi is a major degradation target. Magi overexpression rescues the cellular abnormalities caused by E6+UBE3A coexpression and this activity of Magi is PDZ domain-dependent. Drosophila p53 was not targeted by E6+UBE3A, and E6+UBE3A activity alone is not sufficient to induce tumorigenesis, which only occurs when E6+UBE3A are expressed in conjunction with activated/oncogenic forms of Ras or Notch. Finally, through a genetic screen we have identified the insulin receptor signaling pathway as being required for E6+UBE3A induced hyperplasia. Our results suggest a highly conserved mechanism of HPV E6 mediated cellular transformation, and establish a powerful genetic model to identify and understand the cellular mechanisms that underlie HPV E6-induced malignancy.


Asunto(s)
Transformación Celular Viral/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Proteínas Oncogénicas Virales/metabolismo , Receptor de Insulina/metabolismo , Animales , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Drosophila melanogaster , Humanos , Inmunohistoquímica , Ubiquitina-Proteína Ligasas
7.
J Neurosci ; 36(4): 1151-64, 2016 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-26818504

RESUMEN

The nervous system is surrounded by an extracellular matrix composed of large glycoproteins, including perlecan, collagens, and laminins. Glial cells in many organisms secrete laminin, a large heterotrimeric protein consisting of an α, ß, and γ subunit. Prior studies have found that loss of laminin subunits from vertebrate Schwann cells causes loss of myelination and neuropathies, results attributed to loss of laminin-receptor signaling. We demonstrate that loss of the laminin γ subunit (LanB2) in the peripheral glia of Drosophila melanogaster results in the disruption of glial morphology due to disruption of laminin secretion. Specifically, knockdown of LanB2 in peripheral glia results in accumulation of the ß subunit (LanB1), leading to distended endoplasmic reticulum (ER), ER stress, and glial swelling. The physiological consequences of disruption of laminin secretion in glia included decreased larval locomotion and ultimately lethality. Loss of the γ subunit from wrapping glia resulted in a disruption in the glial ensheathment of axons but surprisingly did not affect animal locomotion. We found that Tango1, a protein thought to exclusively mediate collagen secretion, is also important for laminin secretion in glia via a collagen-independent mechanism. However loss of secretion of the laminin trimer does not disrupt animal locomotion. Rather, it is the loss of one subunit that leads to deleterious consequences through the accumulation of the remaining subunits. SIGNIFICANCE STATEMENT: This research presents a new perspective on how mutations in the extracellular matrix protein laminin cause severe consequences in glial wrapping and function. Glial-specific loss of the ß or γ laminin subunit disrupted glia morphology and led to ER expansion and stress due to retention of other subunits. The retention of the unpaired laminin subunit was key to the glial disruption as loss of Tango1 blocked secretion of the complete laminin trimer but did not lead to glial or locomotion defects. The effects were observed in the perineurial glia that envelope the peripheral and central nervous systems, providing evidence for the importance of this class of glia in supporting nervous system function.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Laminina/metabolismo , Larva/fisiología , Locomoción/fisiología , Sistema Nervioso/citología , Neuroglía/fisiología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Translocador Nuclear del Receptor de Aril Hidrocarburo/genética , Translocador Nuclear del Receptor de Aril Hidrocarburo/metabolismo , Colágeno/fisiología , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Laminina/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Sistema Nervioso/crecimiento & desarrollo , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Interferencia de ARN/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
8.
Development ; 141(15): 3072-83, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25053436

RESUMEN

Many aspects of glial development are regulated by extracellular signals, including those from the extracellular matrix (ECM). Signals from the ECM are received by cell surface receptors, including the integrin family. Previously, we have shown that Drosophila integrins form adhesion complexes with Integrin-linked kinase and talin in the peripheral nerve glia and have conserved roles in glial sheath formation. However, integrin function in other aspects of glial development is unclear. The Drosophila eye imaginal disc (ED) and optic stalk (OS) complex is an excellent model with which to study glial migration, differentiation and glia-neuron interactions. We studied the roles of the integrin complexes in these glial developmental processes during OS/eye development. The common beta subunit ßPS and two alpha subunits, αPS2 and αPS3, are located in puncta at both glia-glia and glia-ECM interfaces. Depletion of ßPS integrin and talin by RNAi impaired the migration and distribution of glia within the OS resulting in morphological defects. Reduction of integrin or talin in the glia also disrupted photoreceptor axon outgrowth leading to axon stalling in the OS and ED. The neuronal defects were correlated with a disruption of the carpet glia tube paired with invasion of glia into the core of the OS and the formation of a glial cap. Our results suggest that integrin-mediated extracellular signals are important for multiple aspects of glial development and non-autonomously affect axonal migration during Drosophila eye development.


Asunto(s)
Axones/metabolismo , Drosophila melanogaster/fisiología , Adhesiones Focales/metabolismo , Neuroglía/citología , Visión Ocular/fisiología , Animales , Axones/fisiología , Adhesión Celular , Diferenciación Celular , Movimiento Celular , Drosophila melanogaster/embriología , Matriz Extracelular/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Discos Imaginales/citología , Integrinas/metabolismo , Neuronas/metabolismo , Fenotipo , Células Fotorreceptoras de Invertebrados/metabolismo , Interferencia de ARN , Talina/metabolismo
9.
J Cell Sci ; 126(Pt 5): 1134-43, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23321643

RESUMEN

Establishment and maintenance of permeability barriers is one of the most important functions of epithelial cells. Tricellular junctions (TCJs) maintain the permeability barriers at the contact site of three epithelial cells. Gliotactin, a member of the Neuroligin family, is the only known Drosophila protein exclusively localized to the TCJ and is necessary for maintenance of the permeability barrier. Overexpression triggers the spread of Gliotactin away from the TCJ and causes epithelial cells to delaminate, migrate and die. Furthermore, excess Gliotactin at the cell membrane results in an extensive downregulation of Discs large (Dlg) at the septate junctions. The intracellular domain of Gliotactin contains two highly conserved tyrosine residues and a PDZ binding motif. We previously found that phosphorylation of the tyrosine residues is necessary to control the level of Gliotactin at the TCJ. In this study we demonstrate that the phenotypes associated with excess Gliotactin are due to a functional interaction between Gliotactin and Dlg that is dependent on both tyrosine phosphorylation as well as the PDZ binding motif. We further show that elevated levels of Dlg strongly enhance Gliotactin overexpression phenotypes to the point where tissue over-growth is observed. The exhibition of these phenotypes require phosphorylation of Dlg on serine 797, a known Par1 phosphorylation target. Blocking this phosphorylation completely suppresses the cell invasiveness and apoptotic phenotypes associated with Gliotactin overexpression. Additionally, we show that Drosophila JNK acts downstream of Gliotactin and Dlg to mediate the overgrowth and apoptosis caused by the functional interaction of Gliotactin and Dlg.


Asunto(s)
Proteínas de Drosophila/metabolismo , Células Epiteliales/citología , Células Epiteliales/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Membrana Celular/metabolismo , Drosophila melanogaster , Uniones Intercelulares/metabolismo
10.
Development ; 138(17): 3813-22, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21828098

RESUMEN

Peripheral nerve development involves multiple classes of glia that cooperate to form overlapping glial layers paired with the deposition of a surrounding extracellular matrix (ECM). The formation of this tubular structure protects the ensheathed axons from physical and pathogenic damage and from changes in the ionic environment. Integrins, a major family of ECM receptors, play a number of roles in the development of myelinating Schwann cells, one class of glia ensheathing the peripheral nerves of vertebrates. However, the identity and the role of the integrin complexes utilized by the other classes of peripheral nerve glia have not been determined in any animal. Here, we show that, in the peripheral nerves of Drosophila melanogaster, two integrin complexes (αPS2ßPS and αPS3ßPS) are expressed in the different glial layers and form adhesion complexes with integrin-linked kinase and Talin. Knockdown of the common beta subunit (ßPS) using inducible RNAi in all glial cells results in lethality and glial defects. Analysis of integrin complex function in specific glial layers showed that loss of ßPS in the outermost layer (the perineurial glia) results in a failure to wrap the nerve, a phenotype similar to that of Matrix metalloproteinase 2-mediated degradation of the ECM. Knockdown of ßPS integrin in the innermost wrapping glia causes a loss of glial processes around axons. Together, our data suggest that integrins are employed in different glial layers to mediate the development and maintenance of the protective glial sheath in Drosophila peripheral nerves.


Asunto(s)
Integrinas/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Nervios Periféricos/citología , Nervios Periféricos/metabolismo , Animales , Axones/metabolismo , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Matriz Extracelular/metabolismo , Inmunohistoquímica , Integrinas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Talina/genética , Talina/metabolismo
11.
Artículo en Inglés | MEDLINE | ID: mdl-38167424

RESUMEN

Glia play a crucial role in providing metabolic support to neurons across different species. To do so, glial cells isolate distinct neuronal compartments from systemic signals and selectively transport specific metabolites and ions to support neuronal development and facilitate neuronal function. Because of their function as barriers, glial cells occupy privileged positions within the nervous system and have also evolved to serve as signaling intermediaries in various contexts. The fruit fly, Drosophila melanogaster, has significantly contributed to our understanding of glial barrier development and function. In this review, we will explore the formation of the glial sheath, blood-brain barrier, and nerve barrier, as well as the significance of glia-extracellular matrix interactions in barrier formation. Additionally, we will delve into the role of glia as signaling intermediaries in regulating nervous system development, function, and response to injury.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Animales , Drosophila melanogaster/metabolismo , Neuroglía/metabolismo , Neuronas/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo
12.
Artículo en Inglés | MEDLINE | ID: mdl-37399178

RESUMEN

Resolution in microscopy-the shortest distance between which objects can be distinguished from each other-is crucial for our ability to view details of biological samples. The theoretical resolution limit of light microscopy is 200 nm in the x,y-plane. Using stacks of x,y images, 3D reconstructions of the z-plane of a specimen can be achieved. However, because of the nature of light diffraction, the resolution of the z-plane reconstitutions is closer to 500-600 nm. Peripheral nerves of the fruit fly Drosophila melanogaster consist of several thin layers of glial cells surrounding the underlying axons. The size of these components can be well under the resolution of z-plane 3D reconstructions, thus making it difficult to determine details of coronal views through these peripheral nerves. Here, we describe a protocol to obtain and immunolabel 10-µm cryosections of whole third-instar larvae of the fruit fly Drosophila melanogaster Cryosectioning the larvae using this method converts visualization of coronal sections of the peripheral nerve into the x,y-plane and brings the resolution down from 500-600 nm to 200 nm. Theoretically, this protocol can also be used with some modifications to obtain cross sections of other tissues.

13.
Artículo en Inglés | MEDLINE | ID: mdl-37399179

RESUMEN

Glial cells are essential for the proper development and functioning of the peripheral nervous system (PNS). The ability to study the biology of glial cells is therefore critical for our ability to understand PNS biology and address PNS maladies. The genetic and proteomic pathways underlying vertebrate peripheral glial biology are understandably complex, with many layers of redundancy making it sometimes difficult to study certain facets of PNS biology. Fortunately, many aspects of vertebrate peripheral glial biology are conserved with those of the fruit fly, Drosophila melanogaster With simple and powerful genetic tools and fast generation times, Drosophila presents an accessible and versatile model for studying the biology of peripheral glia. We introduce here three techniques for studying the cell biology of peripheral glia of Drosophila third-instar larvae. With fine dissection tools and common laboratory reagents, third-instar larvae can be dissected, with extraneous tissues removed, revealing the central nervous system (CNS) and PNS to be processed using a standard immunolabeling protocol. To improve the resolution of peripheral nerves in the z-plane, we describe a cryosectioning method to achieve 10- to 20-µm thick coronal sections of whole larvae, which can then be immunolabeled using a modified version of standard immunolabeling techniques. Finally, we describe a proximity ligation assay (PLA) for detecting close proximity between two proteins-thus inferring protein interaction-in vivo in third-instar larvae. These methods, further described in our associated protocols, can be used to improve our understanding of Drosophila peripheral glia biology, and thus our understanding of PNS biology.

14.
Artículo en Inglés | MEDLINE | ID: mdl-37399180

RESUMEN

The ability to detect protein-protein interactions is critical for understanding the mechanisms underlying protein and cell function. Current methods to assay protein-protein interactions, such as co-immunoprecipitation (Co-IP) and fluorescence resonance energy transfer (FRET), have limitations; for example, Co-IP is an in vitro technique and may not reflect the situation in vivo, and FRET typically suffers from low signal-to-noise ratio. The proximity ligation assay (PLA) is an in situ method for inferring protein-protein interaction with a high signal-to-noise ratio. The PLA technique can indicate that two different proteins are closely associated by the ability of two secondary antibody oligonucleotide probes to hybridize when they are close to each other. This interaction generates a signal with rolling-circle amplification using fluorescent nucleotides. Although a positive result does not indicate that two proteins directly interact, it implies a potential in vivo interaction that can then be verified in vitro. PLA uses primary antibodies against the two proteins (or epitopes) of interest, one raised in mouse and the other raised in rabbit. When these antibodies bind to proteins that lie within 40 nm of each other in the tissue, complementary oligonucleotides conjugated individually to mouse and rabbit secondary antibodies can anneal to form a template for rolling-circle amplification. Using fluorescently labeled nucleotides, rolling circle amplification generates a strong fluorescent signal in areas of the tissue where the two proteins are found together that is detected using conventional fluorescence microscopy. This protocol describes how to perform PLA in vivo on the central nervous system and peripheral nervous system of third-instar larvae of the fruit fly Drosophila melanogaster.

15.
Artículo en Inglés | MEDLINE | ID: mdl-37399181

RESUMEN

The ability to visualize the cells and proteins of a tissue within their original context (i.e., in vivo) is invaluable for the study of that biological system. Visualization is especially important in tissues with complex and convoluted structures, such as the neurons and glia of the nervous system. The central and peripheral nervous systems (CNS and PNS, respectively) of the third-instar larvae of the fruit fly, Drosophila melanogaster, are found on the ventral side of the larvae and are overlaid by the rest of the body tissues. Careful removal of overlying tissues while not damaging the delicate structures of the CNS and PNS is essential for proper visualization of these tissues. This protocol describes the dissection of Drosophila third-instar larvae into fillets and their subsequent immunolabeling to visualize endogenously tagged or antibody-labeled proteins and tissues in the fly CNS and PNS.

16.
J Cell Sci ; 123(Pt 23): 4052-62, 2010 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21045109

RESUMEN

The tricellular junction (TCJ) forms at the convergence of bicellular junctions from three adjacent cells in polarized epithelia and is necessary for maintaining the transepithelial barrier. In the fruitfly Drosophila, the TCJ is generated at the meeting point of bicellular septate junctions. Gliotactin was the first identified component of the TCJ and is necessary for TCJ and septate junction development. Gliotactin is a member of the neuroligin family and associates with the PDZ protein discs large. Beyond this interaction, little is known about the mechanisms underlying Gliotactin localization and function at the TCJ. In this study, we show that Gliotactin is phosphorylated at conserved tyrosine residues, a process necessary for endocytosis and targeting to late endosomes and lysosomes for degradation. Regulation of Gliotactin levels through phosphorylation and endocytosis is necessary as overexpression results in displacement of Gliotactin away from the TCJ throughout the septate junction domain. Excessive Gliotactin in polarized epithelia leads to delamination, paired with subsequent migration, and apoptosis. The apoptosis and the resulting compensatory proliferation resulting from high levels of Gliotactin are mediated by the Drosophila JNK pathway. Therefore, Gliotactin levels within the cell membrane are regulated to ensure correct protein localization and cell survival.


Asunto(s)
Polaridad Celular , Drosophila/metabolismo , Endocitosis , Células Epiteliales/metabolismo , Uniones Intercelulares/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Secuencias de Aminoácidos , Animales , Proliferación Celular , Supervivencia Celular , Drosophila/química , Drosophila/citología , Drosophila/genética , Endosomas/genética , Endosomas/metabolismo , Células Epiteliales/química , Células Epiteliales/citología , Uniones Intercelulares/química , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Fosforilación , Transporte de Proteínas
17.
J Cell Biol ; 161(5): 991-1000, 2003 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-12782681

RESUMEN

Septate junctions (SJs), similar to tight junctions, function as transepithelial permeability barriers. Gliotactin (Gli) is a cholinesterase-like molecule that is necessary for blood-nerve barrier integrity, and may, therefore, contribute to SJ development or function. To address this hypothesis, we analyzed Gli expression and the Gli mutant phenotype in Drosophila epithelia. In Gli mutants, localization of SJ markers neurexin-IV, discs large, and coracle are disrupted. Furthermore, SJ barrier function is lost as determined by dye permeability assays. These data suggest that Gli is necessary for SJ formation. Surprisingly, Gli distribution only colocalizes with other SJ markers at tricellular junctions, suggesting that Gli has a unique function in SJ development. Ultrastructural analysis of Gli mutants supports this notion. In contrast to other SJ mutants in which septa are missing, septa are present in Gli mutants, but the junction has an immature morphology. We propose a model, whereby Gli acts at tricellular junctions to bind, anchor, or compact SJ strands apically during SJ development.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster/embriología , Epitelio/anomalías , Uniones Intercelulares/patología , Proteínas de la Membrana/deficiencia , Proteínas del Tejido Nervioso/deficiencia , Animales , Animales Modificados Genéticamente , Biomarcadores , Moléculas de Adhesión Celular Neuronal/deficiencia , Moléculas de Adhesión Celular Neuronal/genética , Comunicación Celular/genética , Membrana Celular/metabolismo , Membrana Celular/patología , Membrana Celular/ultraestructura , Permeabilidad de la Membrana Celular/genética , Drosophila melanogaster/metabolismo , Drosophila melanogaster/ultraestructura , Epidermis/anomalías , Epidermis/metabolismo , Epidermis/ultraestructura , Epitelio/metabolismo , Epitelio/ultraestructura , Regulación del Desarrollo de la Expresión Génica/genética , Uniones Intercelulares/metabolismo , Uniones Intercelulares/ultraestructura , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Microscopía Electrónica , Modelos Animales , Modelos Biológicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo
18.
Mol Biol Cell ; 29(2): 123-136, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29167383

RESUMEN

Tricellular junctions (TCJs) are uniquely placed permeability barriers formed at the corners of polarized epithelia where tight junctions in vertebrates or septate junctions (SJ) in invertebrates from three cells converge. Gliotactin is a Drosophila TCJ protein, and loss of Gliotactin results in SJ and TCJ breakdown and permeability barrier loss. When overexpressed, Gliotactin spreads away from the TCJs, resulting in disrupted epithelial architecture, including overproliferation, cell delamination, and migration. Gliotactin levels are tightly controlled at the mRNA level and at the protein level through endocytosis and degradation triggered by tyrosine phosphorylation. We identified C-terminal Src kinase (Csk) as a tyrosine kinase responsible for regulating Gliotactin endocytosis. Increased Csk suppresses the Gliotactin overexpression phenotypes by increasing endocytosis. Loss of Csk causes Gliotactin to spread away from the TCJ. Although Csk is known as a negative regulator of Src kinases, the effects of Csk on Gliotactin are independent of Src and likely occur through an adherens junction associated complex. Overall, we identified a new Src-independent role for Csk in the control of Gliotactin, a key tricellular junction protein.


Asunto(s)
Uniones Adherentes/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Familia-src Quinasas/metabolismo , Animales , Proteína Tirosina Quinasa CSK , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Endocitosis/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Fosforilación , Uniones Estrechas/metabolismo , Familia-src Quinasas/genética
19.
Curr Biol ; 28(9): 1380-1391.e4, 2018 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-29706514

RESUMEN

How permeability barrier function is maintained when epithelial cells divide is largely unknown. Here, we have investigated how the bicellular septate junctions (BSJs) and tricellular septate junctions (TSJs) are remodeled throughout completion of cytokinesis in Drosophila epithelia. We report that, following cytokinetic ring constriction, the midbody assembles, matures within SJs, and is displaced basally in two phases. In a first slow phase, the neighboring cells remain connected to the dividing cells by means of SJ-containing membrane protrusions pointing to the maturing midbody. Fluorescence recovery after photobleaching (FRAP) experiments revealed that SJs within the membrane protrusions correspond to the old SJs that were present prior to cytokinesis. In contrast, new SJs are assembled below the adherens junctions and spread basally to build a new belt of SJs in a manner analogous to a conveyor belt. Loss of function of a core BSJ component, the Na+/K+-ATPase pump Nervana 2 subunit, revealed that the apical-to-basal spread of BSJs drives the basal displacement of the midbody. In contrast, loss of the TSJ protein Bark beetle indicated that remodeling of TSJs is rate limiting and slowed down midbody migration. In the second phase, once the belt of SJs is assembled, the basal displacement of the midbody is accelerated and ultimately leads to abscission. This last step is temporally uncoupled from the remodeling of SJs. We propose that cytokinesis in epithelia involves the coordinated polarized assembly and remodeling of SJs both in the dividing cell and its neighbors to ensure the maintenance of permeability barrier integrity in proliferative epithelia.


Asunto(s)
Comunicación Celular , Proliferación Celular , Citocinesis , Drosophila melanogaster/fisiología , Embrión no Mamífero/fisiología , Epitelio/fisiología , Uniones Intercelulares/fisiología , Animales , Drosophila melanogaster/embriología , Embrión no Mamífero/citología , Epitelio/crecimiento & desarrollo , Discos Imaginales/citología , Discos Imaginales/fisiología , Alas de Animales/citología , Alas de Animales/fisiología
20.
PLoS One ; 11(4): e0153259, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27074039

RESUMEN

The mammalian MAGI proteins play important roles in the maintenance of adherens and tight junctions. The MAGI family of proteins contains modular domains such as WW and PDZ domains necessary for scaffolding of membrane receptors and intracellular signaling components. Loss of MAGI leads to reduced junction stability while overexpression of MAGI can lead to increased adhesion and stabilization of epithelial morphology. However, how Magi regulates junction assembly in epithelia is largely unknown. We investigated the single Drosophila homologue of Magi to study the in vivo role of Magi in epithelial development. Magi is localized at the adherens junction and forms a complex with the polarity proteins, Par3/Bazooka and aPKC. We generated a Magi null mutant and found that Magi null mutants were viable with no detectable morphological defects even though the Magi protein is highly conserved with vertebrate Magi homologues. However, overexpression of Magi resulted in the displacement of Baz/Par3 and aPKC and lead to an increase in the level of PIP3. Interestingly, we found that Magi and Baz functioned in an antagonistic manner to regulate the localization of the apical polarity complex. Maintaining the balance between the level of Magi and Baz is an important determinant of the levels and localization of apical polarity complex.


Asunto(s)
Uniones Adherentes/metabolismo , Polaridad Celular/fisiología , Proteínas de Drosophila/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Nucleósido-Fosfato Quinasa/metabolismo , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/genética , Nucleósido-Fosfato Quinasa/genética , Proteína Quinasa C/metabolismo , Uniones Estrechas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda