Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell ; 172(5): 1079-1090.e12, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29474908

RESUMEN

How signaling dynamics encode information is a central question in biology. During vertebrate development, dynamic Notch signaling oscillations control segmentation of the presomitic mesoderm (PSM). In mouse embryos, this molecular clock comprises signaling oscillations of several pathways, i.e., Notch, Wnt, and FGF signaling. Here, we directly address the role of the relative timing between Wnt and Notch signaling oscillations during PSM patterning. To this end, we developed a new experimental strategy using microfluidics-based entrainment that enables specific control of the rhythm of segmentation clock oscillations. Using this approach, we find that Wnt and Notch signaling are coupled at the level of their oscillation dynamics. Furthermore, we provide functional evidence that the oscillation phase shift between Wnt and Notch signaling is critical for PSM segmentation. Our work hence reveals that dynamic signaling, i.e., the relative timing between oscillatory signals, encodes essential information during multicellular development.


Asunto(s)
Tipificación del Cuerpo , Mesodermo/embriología , Receptores Notch/metabolismo , Transducción de Señal , Proteínas Wnt/metabolismo , Animales , Genes Reporteros , Mesodermo/metabolismo , Ratones , Microfluídica , Somitos/embriología , Somitos/metabolismo
2.
Cell ; 164(4): 656-67, 2016 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-26871631

RESUMEN

In vertebrate embryos, somites, the precursor of vertebrae, form from the presomitic mesoderm (PSM), which is composed of cells displaying signaling oscillations. Cellular oscillatory activity leads to periodic wave patterns in the PSM. Here, we address the origin of such complex wave patterns. We employed an in vitro randomization and real-time imaging strategy to probe for the ability of cells to generate order from disorder. We found that, after randomization, PSM cells self-organized into several miniature emergent PSM structures (ePSM). Our results show an ordered macroscopic spatial arrangement of ePSM with evidence of an intrinsic length scale. Furthermore, cells actively synchronize oscillations in a Notch-signaling-dependent manner, re-establishing wave-like patterns of gene activity. We demonstrate that PSM cells self-organize by tuning oscillation dynamics in response to surrounding cells, leading to collective synchronization with an average frequency. These findings reveal emergent properties within an ensemble of coupled genetic oscillators.


Asunto(s)
Relojes Biológicos , Embrión de Mamíferos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/metabolismo , Organizadores Embrionarios/metabolismo , Animales , Tipificación del Cuerpo , Ratones
3.
EMBO J ; 43(18): 4068-4091, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39122924

RESUMEN

How the timing of development is linked to organismal size is a longstanding question. Although numerous studies have reported a correlation of temporal and spatial traits, the developmental or selective constraints underlying this link remain largely unexplored. We address this question by studying the periodic process of embryonic axis segmentation in-vivo in Oryzias fish. Interspecies comparisons reveal that the timing of segmentation correlates to segment, tissue and organismal size. Segment size in turn scales according to tissue and organism size. To probe for underlying causes, we genetically hybridised two closely related species. Quantitative analysis in ~600 phenotypically diverse F2 embryos reveals a decoupling of timing from size control, while spatial scaling is preserved. Using developmental quantitative trait loci (devQTL) mapping we identify distinct genetic loci linked to either the control of segmentation timing or tissue size. This study demonstrates that a developmental constraint mechanism underlies spatial scaling of axis segmentation, while its spatial and temporal control are dissociable modules.


Asunto(s)
Oryzias , Sitios de Carácter Cuantitativo , Animales , Oryzias/genética , Oryzias/embriología , Tipificación del Cuerpo/genética , Regulación del Desarrollo de la Expresión Génica , Tamaño Corporal
4.
Proc Natl Acad Sci U S A ; 121(36): e2401604121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190346

RESUMEN

Synchronization of coupled oscillators is a universal phenomenon encountered across different scales and contexts, e.g., chemical wave patterns, superconductors, and the unison applause we witness in concert halls. The existence of common underlying coupling rules defines universality classes, revealing a fundamental sameness between seemingly distinct systems. Identifying rules of synchronization in any particular setting is hence of paramount relevance. Here, we address the coupling rules within an embryonic oscillator ensemble linked to vertebrate embryo body axis segmentation. In vertebrates, the periodic segmentation of the body axis involves synchronized signaling oscillations in cells within the presomitic mesoderm (PSM), from which somites, the prevertebrae, form. At the molecular level, it is known that intact Notch-signaling and cell-to-cell contact are required for synchronization between PSM cells. However, an understanding of the coupling rules is still lacking. To identify these, we develop an experimental assay that enables direct quantification of synchronization dynamics within mixtures of oscillating cell ensembles, for which the initial input frequency and phase distribution are known. Our results reveal a "winner-takes-it-all" synchronization outcome, i.e., the emerging collective rhythm matches one of the input rhythms. Using a combination of theory and experimental validation, we develop a coupling model, the "Rectified Kuramoto" (ReKu) model, characterized by a phase-dependent, nonreciprocal interaction in the coupling of oscillatory cells. Such nonreciprocal synchronization rules reveal fundamental similarities between embryonic oscillators and a class of collective behaviors seen in neurons and fireflies, where higher-level computations are performed and linked to nonreciprocal synchronization.


Asunto(s)
Tipificación del Cuerpo , Animales , Tipificación del Cuerpo/fisiología , Relojes Biológicos/fisiología , Embrión no Mamífero/fisiología , Transducción de Señal/fisiología , Somitos/embriología , Mesodermo/embriología , Modelos Biológicos
5.
Development ; 149(13)2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35686648

RESUMEN

A fundamental requirement for embryonic development is the coordination of signaling activities in space and time. A notable example in vertebrate embryos is found during somitogenesis, where gene expression oscillations linked to the segmentation clock are synchronized across cells in the presomitic mesoderm (PSM) and result in tissue-level wave patterns. To examine their onset during mouse embryo development, we studied the dynamics of the segmentation clock gene Lfng during gastrulation. To this end, we established an imaging setup using selective plane illumination microscopy (SPIM) that enables culture and simultaneous imaging of up to four embryos ('SPIM- for-4'). Using SPIM-for-4, combined with genetically encoded signaling reporters, we detected the onset of Lfng oscillations within newly formed mesoderm at presomite stages. Functionally, we found that initial synchrony and the first ∼6-8 oscillation cycles occurred even when Notch signaling was impaired, revealing similarities to previous findings made in zebrafish embryos. Finally, we show that a spatial period gradient is present at the onset of oscillatory activity, providing a potential mechanism accounting for our observation that wave patterns build up gradually over the first oscillation cycles.


Asunto(s)
Gastrulación , Somitos , Animales , Regulación del Desarrollo de la Expresión Génica , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Mesodermo/metabolismo , Ratones , Receptores Notch/genética , Receptores Notch/metabolismo , Somitos/metabolismo , Pez Cebra/genética
6.
Development ; 145(19)2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30275240

RESUMEN

An emerging view emphasizes that metabolism is highly regulated in both time and space. In addition, it is increasingly being recognized that metabolic pathways are tightly connected to specific biological processes such as cell signaling, proliferation and differentiation. As we obtain a better view of this spatiotemporal regulation of metabolism, and of the molecular mechanisms that connect metabolism and signaling, we can now move from largely correlative to more functional studies. It is, therefore, a particularly promising time to revisit how metabolism can affect multiple aspects of animal development. In this Review, we discuss how metabolism is mechanistically linked to cellular and developmental programs through both its bioenergetic and metabolic signaling functions. We highlight how metabolism is regulated across various spatial and temporal scales, and discuss how this regulation can influence cellular processes such as cell signaling, gene expression, and epigenetic and post-translational modifications during embryonic development.


Asunto(s)
Desarrollo Embrionario , Metabolismo , Animales , Células/metabolismo , Metabolismo Energético , Epigénesis Genética , Humanos , Factores de Tiempo
7.
Nature ; 493(7430): 101-5, 2013 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-23254931

RESUMEN

A fundamental feature of embryonic patterning is the ability to scale and maintain stable proportions despite changes in overall size, for instance during growth. A notable example occurs during vertebrate segment formation: after experimental reduction of embryo size, segments form proportionally smaller, and consequently, a normal number of segments is formed. Despite decades of experimental and theoretical work, the underlying mechanism remains unknown. More recently, ultradian oscillations in gene activity have been linked to the temporal control of segmentation; however, their implication in scaling remains elusive. Here we show that scaling of gene oscillation dynamics underlies segment scaling. To this end, we develop a new experimental model, an ex vivo primary cell culture assay that recapitulates mouse mesoderm patterning and segment scaling, in a quasi-monolayer of presomitic mesoderm cells (hereafter termed monolayer PSM or mPSM). Combined with real-time imaging of gene activity, this enabled us to quantify the gradual shift in the oscillation phase and thus determine the resulting phase gradient across the mPSM. Crucially, we show that this phase gradient scales by maintaining a fixed amplitude across mPSM of different lengths. We identify the slope of this phase gradient as a single predictive parameter for segment size, which functions in a size- and temperature-independent manner, revealing a hitherto unrecognized mechanism for scaling. Notably, in contrast to molecular gradients, a phase gradient describes the distribution of a dynamical cellular state. Thus, our phase-gradient scaling findings reveal a new level of dynamic information-processing, and provide evidence for the concept of phase-gradient encoding during embryonic patterning and scaling.


Asunto(s)
Tipificación del Cuerpo/fisiología , Tamaño Corporal , Embrión de Mamíferos/anatomía & histología , Embrión de Mamíferos/embriología , Mesodermo/anatomía & histología , Mesodermo/embriología , Modelos Biológicos , Animales , Células Cultivadas , Señales (Psicología) , Embrión de Mamíferos/citología , Regulación del Desarrollo de la Expresión Génica , Técnicas In Vitro , Mesodermo/citología , Ratones , Temperatura
8.
Semin Cell Dev Biol ; 34: 91-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25008461

RESUMEN

Encoding information at the level of signal dynamics is characterized by distinct features, such as robustness to noise and high information content. Currently, a growing number of studies are unravelling the functional importance of signalling dynamics at the single cell level. In addition, first insights are emerging into how the principles of dynamic signal encoding apply to a multicellular context, such as development. In this review, we will first discuss general concepts of information transmission via signalling dynamics and recent experimental examples focusing on underlying principles, including the role of intracellular network topologies. How multicellular organisms use temporal modulation of specific signalling pathways, such as signalling gradients or oscillations, to faithfully control cell fate decisions and pattern formation will also be addressed. Finally, we will consider how technical advancements in the detection and perturbation of signalling dynamics contribute to reshaping our understanding of dynamic signalling in developing organisms.


Asunto(s)
Transducción de Señal , Animales , Tipificación del Cuerpo , Comunicación Celular , Diferenciación Celular , Regulación de la Expresión Génica , Humanos
9.
Elife ; 112022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36469462

RESUMEN

How cellular metabolic state impacts cellular programs is a fundamental, unresolved question. Here, we investigated how glycolytic flux impacts embryonic development, using presomitic mesoderm (PSM) patterning as the experimental model. First, we identified fructose 1,6-bisphosphate (FBP) as an in vivo sentinel metabolite that mirrors glycolytic flux within PSM cells of post-implantation mouse embryos. We found that medium-supplementation with FBP, but not with other glycolytic metabolites, such as fructose 6-phosphate and 3-phosphoglycerate, impaired mesoderm segmentation. To genetically manipulate glycolytic flux and FBP levels, we generated a mouse model enabling the conditional overexpression of dominant active, cytoplasmic PFKFB3 (cytoPFKFB3). Overexpression of cytoPFKFB3 indeed led to increased glycolytic flux/FBP levels and caused an impairment of mesoderm segmentation, paralleled by the downregulation of Wnt-signaling, reminiscent of the effects seen upon FBP-supplementation. To probe for mechanisms underlying glycolytic flux-signaling, we performed subcellular proteome analysis and revealed that cytoPFKFB3 overexpression altered subcellular localization of certain proteins, including glycolytic enzymes, in PSM cells. Specifically, we revealed that FBP supplementation caused depletion of Pfkl and Aldoa from the nuclear-soluble fraction. Combined, we propose that FBP functions as a flux-signaling metabolite connecting glycolysis and PSM patterning, potentially through modulating subcellular protein localization.


Asunto(s)
Glucólisis , Mesodermo , Animales , Ratones , Desarrollo Embrionario , Embrión de Mamíferos/metabolismo , Vía de Señalización Wnt , Fosfotransferasas/metabolismo
10.
Elife ; 112022 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-36223168

RESUMEN

Living systems exhibit an unmatched complexity, due to countless, entangled interactions across scales. Here, we aim to understand a complex system, that is, segmentation timing in mouse embryos, without a reference to these detailed interactions. To this end, we develop a coarse-grained approach, in which theory guides the experimental identification of the segmentation clock entrainment responses. We demonstrate period- and phase-locking of the segmentation clock across a wide range of entrainment parameters, including higher-order coupling. These quantifications allow to derive the phase response curve (PRC) and Arnold tongues of the segmentation clock, revealing its essential dynamical properties. Our results indicate that the somite segmentation clock has characteristics reminiscent of a highly non-linear oscillator close to an infinite period bifurcation and suggests the presence of long-term feedbacks. Combined, this coarse-grained theoretical-experimental approach reveals how we can derive simple, essential features of a highly complex dynamical system, providing precise experimental control over the pace and rhythm of the somite segmentation clock.


Asunto(s)
Somitos , Lengua , Animales , Ratones
12.
Elife ; 102021 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-34870593

RESUMEN

The CRISPR/Cas9 system has been used to generate fluorescently labelled fusion proteins by homology-directed repair in a variety of species. Despite its revolutionary success, there remains an urgent need for increased simplicity and efficiency of genome editing in research organisms. Here, we establish a simplified, highly efficient, and precise strategy for CRISPR/Cas9-mediated endogenous protein tagging in medaka (Oryzias latipes). We use a cloning-free approach that relies on PCR-amplified donor fragments containing the fluorescent reporter sequences flanked by short homology arms (30-40 bp), a synthetic single-guide RNA and Cas9 mRNA. We generate eight novel knock-in lines with high efficiency of F0 targeting and germline transmission. Whole genome sequencing results reveal single-copy integration events only at the targeted loci. We provide an initial characterization of these fusion protein lines, significantly expanding the repertoire of genetic tools available in medaka. In particular, we show that the mScarlet-pcna line has the potential to serve as an organismal-wide label for proliferative zones and an endogenous cell cycle reporter.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , Oryzias/genética , Oryzias/fisiología , Transporte de Proteínas/genética , Transporte de Proteínas/fisiología , Animales , Biología Evolutiva , Técnicas de Sustitución del Gen
13.
Ann N Y Acad Sci ; 1506(1): 55-73, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34414571

RESUMEN

There is an increasing appreciation for the role of metabolism in cell signaling and cell decision making. Precise metabolic control is essential in development, as evident by the disorders caused by mutations in metabolic enzymes. The metabolic profile of cells is often cell-type specific, changing as cells differentiate or during tumorigenesis. Recent evidence has shown that changes in metabolism are not merely a consequence of changes in cell state but that metabolites can serve to promote and/or inhibit these changes. Metabolites can link metabolic pathways with cell signaling pathways via several mechanisms, for example, by serving as substrates for protein post-translational modifications, by affecting enzyme activity via allosteric mechanisms, or by altering epigenetic markers. Unraveling the complex interactions governing metabolism, gene expression, and protein activity that ultimately govern a cell's fate will require new tools and interactions across disciplines. On March 24 and 25, 2021, experts in cell metabolism, developmental biology, and human disease met virtually for the Keystone eSymposium, "Metabolic Decisions in Development and Disease." The discussions explored how metabolites impact cellular and developmental decisions in a diverse range of model systems used to investigate normal development, developmental disorders, dietary effects, and cancer-mediated changes in metabolism.


Asunto(s)
Congresos como Asunto/tendencias , Desarrollo Humano/fisiología , Enfermedades Metabólicas/fisiopatología , Redes y Vías Metabólicas/fisiología , Neoplasias/fisiopatología , Informe de Investigación , Animales , Epigénesis Genética/fisiología , Humanos , Enfermedades Metabólicas/genética , Neoplasias/genética , Transducción de Señal/fisiología
14.
Dev Cell ; 4(3): 395-406, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12636920

RESUMEN

The vertebral column derives from somites generated by segmentation of presomitic mesoderm (PSM). Somitogenesis involves a molecular oscillator, the segmentation clock, controlling periodic Notch signaling in the PSM. Here, we establish a novel link between Wnt/beta-catenin signaling and the segmentation clock. Axin2, a negative regulator of the Wnt pathway, is directly controlled by Wnt/beta-catenin and shows oscillating expression in the PSM, even when Notch signaling is impaired, alternating with Lfng expression. Moreover, Wnt3a is required for oscillating Notch signaling activity in the PSM. We propose that the segmentation clock is established by Wnt/beta-catenin signaling via a negative-feedback mechanism and that Wnt3a controls the segmentation process in vertebrates.


Asunto(s)
Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Embrión de Mamíferos/embriología , Embrión no Mamífero , Proteínas/metabolismo , Somitos/metabolismo , Columna Vertebral/embriología , Vertebrados/embriología , Animales , Proteína Axina , Relojes Biológicos/genética , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Embrión de Mamíferos/metabolismo , Retroalimentación/fisiología , Feto , Regulación del Desarrollo de la Expresión Génica/genética , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Ratones Transgénicos , Proteínas/genética , Transducción de Señal/genética , Somitos/citología , Columna Vertebral/citología , Columna Vertebral/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Vertebrados/metabolismo , Proteínas Wnt , Proteína Wnt3 , Proteína Wnt3A , beta Catenina
15.
Dev Cell ; 40(4): 331-341.e4, 2017 02 27.
Artículo en Inglés | MEDLINE | ID: mdl-28245920

RESUMEN

How metabolism is rewired during embryonic development is still largely unknown, as it remains a major technical challenge to resolve metabolic activities or metabolite levels with spatiotemporal resolution. Here, we investigated metabolic changes during development of organogenesis-stage mouse embryos, focusing on the presomitic mesoderm (PSM). We measured glycolytic labeling kinetics from 13C-glucose tracing experiments and detected elevated glycolysis in the posterior, more undifferentiated PSM. We found evidence that the spatial metabolic differences are functionally relevant during PSM development. To enable real-time quantification of a glycolytic metabolite with spatiotemporal resolution, we generated a pyruvate FRET-sensor reporter mouse line. We revealed dynamic changes in cytosolic pyruvate levels as cells transit toward a more anterior PSM state. Combined, our approach identifies a gradient of glycolytic activity across the PSM, and we provide evidence that these spatiotemporal metabolic changes are intrinsically linked to PSM development and differentiation.


Asunto(s)
Desarrollo Embrionario , Glucólisis , Mesodermo/embriología , Mesodermo/metabolismo , Análisis Espacio-Temporal , Animales , Isótopos de Carbono , Diferenciación Celular/genética , Sistemas de Computación , Embrión de Mamíferos/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Glucosa/metabolismo , Hibridación in Situ , Cinética , Análisis de Flujos Metabólicos , Metabolómica , Ratones , Modelos Biológicos , Especificidad de Órganos/genética , Fenotipo , Ácido Pirúvico/metabolismo , Somitos/embriología , Somitos/metabolismo
16.
Anat Embryol (Berl) ; 211 Suppl 1: 3-8, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17024300

RESUMEN

It is currently thought that the mechanism underlying somitogenesis is linked to a molecular oscillator, the segmentation clock, and to gradients of signaling molecules within the paraxial mesoderm. Here, we review the current picture of this segmentation clock and gradients, and use this knowledge to critically ask: What is the basis for periodicity and directionality of somitogenesis?


Asunto(s)
Relojes Biológicos/fisiología , Tipificación del Cuerpo/fisiología , Desarrollo Embrionario/fisiología , Transducción de Señal/fisiología , Somitos/fisiología , Proteínas Wnt/metabolismo , Animales
17.
Dev Cell ; 39(3): 286-287, 2016 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-27825439

RESUMEN

The role of metabolic rewiring during cellular differentiation is under intense investigation. Reporting recently in Science, Peng et al. (2016) found that activation of glycolysis supports T helper cell differentiation by controlling acetyl-coA and histone acetylation levels, identifying a link between metabolic state and epigenetic control of gene activity.


Asunto(s)
Acetilcoenzima A/genética , Histonas/genética , Acetilación , Diferenciación Celular , Procesamiento Proteico-Postraduccional
18.
Cold Spring Harb Perspect Biol ; 2(2): a000869, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20182616

RESUMEN

The sequential formation of somites along the anterior-posterior axis is under control of multiple signaling gradients involving the Wnt, FGF, and retinoic acid (RA) pathways. These pathways show graded distribution of signaling activity within the paraxial mesoderm of vertebrate embryos. Although Wnt and FGF signaling show highest activity in the posterior, unsegmented paraxial mesoderm (presomitic mesoderm [PSM]), RA signaling establishes a countergradient with the highest activity in the somites. The generation of these graded activities relies both on classical source-sink mechanisms (for RA signaling) and on an RNA decay mechanism (for FGF signaling). Numerous studies reveal the tight interconnection among Wnt, FGF, and RA signaling in controlling paraxial mesoderm differentiation and in defining the somite-forming unit. In particular, the relationship to a molecular oscillator acting in somite precursors in the PSM-called the segmentation clock-has been recently addressed. These studies indicate that high levels of Wnt and FGF signaling are required for the segmentation clock activity. Furthermore, we discuss how these signaling gradients act in a dose-dependent manner in the progenitors of the paraxial mesoderm, partly by regulating cell movements during gastrulation. Finally, links between the process of axial specification of vertebral segments and Hox gene expression are discussed.


Asunto(s)
Mesodermo/metabolismo , Transducción de Señal , Animales , Tipificación del Cuerpo , Relación Dosis-Respuesta a Droga , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Humanos , Modelos Biológicos , Oscilometría , Somitos , Factores de Tiempo , Tretinoina/metabolismo , Proteínas Wnt/metabolismo
19.
Dev Cell ; 17(4): 439-40, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19853557

RESUMEN

Hox genes are well known for their evolutionarily conserved role in patterning the body axis. Now, Young et al. in this issue of Developmental Cell present evidence that at least in mouse embryos Hox genes do more, namely controlling the process of axis formation itself.


Asunto(s)
Tipificación del Cuerpo/genética , Genes Homeobox/fisiología , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Animales , Factor de Transcripción CDX2 , Ratones
20.
Curr Opin Cell Biol ; 20(6): 632-7, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18845254

RESUMEN

Oscillatory signaling pathway activity during embryonic development was first identified in the process of vertebrate somite formation. In mouse, this process is thought to be largely controlled by a cyclic signaling network involving the Notch, FGF, and Wnt pathways. Surprisingly, several recent genetic studies reveal that the core oscillation pacemaker is unlikely to involve periodic activation by these pathways. The mechanism(s) responsible for the production of oscillatory gene activity during somite formation remains, therefore, to be discovered. Oscillatory signaling activity has recently been identified in developmental processes distinct from somite formation. Both the processes of limb development in chick embryos and the maintenance of neural progenitors in mouse embryos involve oscillatory gene activity related to the Notch pathway. These discoveries indicate that oscillatory signaling activities during embryonic development might serve a more general function than previously thought.


Asunto(s)
Relojes Biológicos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Transducción de Señal , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Desarrollo Embrionario/fisiología , Retroalimentación Fisiológica/fisiología , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/metabolismo , Mesodermo/embriología , Mesodermo/metabolismo , Ratones , Neuronas/metabolismo , Receptores Notch/metabolismo , Somitos/metabolismo , Factor de Transcripción HES-1 , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda