RESUMEN
Direct pathway striatal projection neurons (dSPNs) are characterized by the expression of dopamine (DA) class 1 receptors (D1 R), as well as cholinergic muscarinic M1 and M4 receptors (M1 R, M4 R). D1 R enhances neuronal firing through phosphorylation of voltage-gate calcium channels (CaV 1 Ca2+ channels) activating Gs proteins and protein kinase A (PKA). Concurrently, PKA suppresses phosphatase PP-1 through DARPP-32, thus extending this facilitatory modulation. M1 R also influences Ca2+ channels in SPNs through Gq proteins and protein kinase C. However, the signaling mechanisms of M4 R in dSPNs are less understood. Two pathways are attributed to M4 R: an inhibitory one through Gi/o proteins, and a facilitatory one via the cyclin Cdk5. Our study reveals that a previously observed facilitatory modulation via CaV 1 Ca2+ channels is linked to the Cdk5 pathway in dSPNs. This result could be significant in treating parkinsonism. Therefore, we questioned whether this effect persists post DA-depletion in experimental parkinsonism. Our findings indicate that in such conditions, M4 R activation leads to a decrease in Ca2+ current and an increased M4 R protein level, contrasting with the control response. Nevertheless, parkinsonian and control actions are inhibited by the Cdk5 inhibitor roscovitine, suggesting Cdk5's role in both conditions. Cdk5 may activate PP-1 via PKA inhibition in DA depletion. Indeed, we found that inhibiting PP-1 restores control M4 R actions, implying that PP-1 is overly active via M4 Rs in DA-depleted condition. These insights contribute to understanding how DA-depletion alters modulatory signaling in striatal neurons. Additional working hypotheses are discussed.
Asunto(s)
Cuerpo Estriado , Dopamina , Dopamina/metabolismo , Cuerpo Estriado/metabolismo , Interneuronas/metabolismo , Neuronas/metabolismo , Colinérgicos/metabolismo , Colinérgicos/farmacologíaRESUMEN
BACKGROUND AND PURPOSE: Olcegepant (BIBN4096BS) is a selective non-peptide CGRP receptor antagonist with acute antimigraine properties. Since systemic vascular tone is modulated by perivascular (primary sensory CGRPergic and sympathetic) nerves, this randomized study investigated in pithed rats the effect of acute i.v. treatment with olcegepant on the neurogenic and non-neurogenic: (i) CGRPergic vasodepressor responses; and (ii) noradrenergic vasopressor responses. The pithed rat is an experimental model predictive of systemic (cardio) vascular side effects. EXPERIMENTAL APPROACH: Seventy-five male Wistar rats (divided into 15 groups, n = 5 each) were pithed, artificially ventilated and prepared for: (i) spinal stimulation (T9 -T12 ; 0.56-5.6 Hz) of the sensory CGRPergic vasodepressor outflow or i.v. bolus injections (0.1-1 µg·kg-1 ) of α-CGRP, substance P or acetylcholine, which induced frequency-dependent or dose-dependent vasodepressor responses; or (ii) spinal stimulation (T7 -T9 ; 0.03-3 Hz) of the sympathetic vasopressor outflow or i.v. bolus injections (0.03-3 µg·kg-1 ) of noradrenaline, which produced frequency-dependent or dose-dependent vasopressor responses. KEY RESULTS: Olcegepant (1000 and 3000 µg·kg-1 , i.v.) dose-dependently blocked the vasodepressor responses to sensory nerve stimulation or i.v. α-CGRP, without affecting those to substance P or acetylcholine. Whereas it potentiated the vasopressor responses to sympathetic nerve stimulation or i.v. noradrenaline. CONCLUSIONS AND IMPLICATIONS: Olcegepant (i.v.) selectively blocked the neurogenic and non-neurogenic CGRPergic vasodepressor responses. This blockade by olcegepant potentiated the neurogenic and non-neurogenic noradrenergic vasopressor responses in pithed rats, an effect that might result in an increased vascular resistance and, consequently, in a prohypertensive action.