RESUMEN
The Industrial Internet of Things (IIoT) is bringing evolution with remote monitoring, intelligent analytics, and control of industrial processes. However, as the industrial world is currently in its initial stage of adopting full-stack development solutions with IIoT, there is a need to address the arising challenges. In this regard, researchers have proposed IIoT architectures based on different architectural layers and emerging technologies for the end-to-end integration of IIoT systems. In this paper, we review and compare three widely accepted IIoT reference architectures and present a state-of-the-art review of conceptual and experimental IIoT architectures from the literature. We identified scalability, interoperability, security, privacy, reliability, and low latency as the main IIoT architectural requirements and detailed how the current architectures address these challenges by using emerging technologies such as edge/fog computing, blockchain, SDN, 5G, Machine Learning, and Wireless Sensor Networks (WSN). Finally, we discuss the relation between the current challenges and emergent technologies and present some opportunities and directions for future research work.
Asunto(s)
Cadena de Bloques , Internet de las Cosas , Seguridad Computacional , Privacidad , Reproducibilidad de los ResultadosRESUMEN
To understand the molecular anatomy of myelin membranes, we performed a large-scale, liquid chromatography-coupled tandem mass spectrometry (LC-MS/MS)-based lipidome and proteome screen on freshly purified human and murine myelin fractions. We identified more than 700 lipid moieties and above 1,000 proteins in the two species, including 284 common lipids and 257 common proteins. This study establishes the first comprehensive map of myelin membrane components in human and mice. Although this study demonstrates many similarities between human and murine myelin, several components have been identified exclusively in each species. Future quantitative validation studies focused on interspecies differences will authenticate the myelin membrane anatomy. The combined lipidome and proteome map presented here can nevertheless be used as a reference library for myelin health and disease.
Asunto(s)
Membrana Celular/genética , Mapeo Cromosómico/métodos , Lípidos de la Membrana/genética , Vaina de Mielina/genética , Proteoma/genética , Animales , Membrana Celular/química , Humanos , Ratones , Ratones Endogámicos C57BL , Vaina de Mielina/química , Espectrometría de Masas en Tándem/métodosRESUMEN
GLI pathogenesis-related 1 (GLIPR1) was previously identified as an epigenetically regulated tumor suppressor in prostate cancer and, conversely, an oncoprotein in glioma. More recently, GLIPR1 was shown to be differentially expressed in other cancers including ovarian, acute myeloid leukemia, and Wilms' tumor. Here we investigated GLIPR1 expression in metastatic melanoma cell lines and tissue. GLIPR1 was variably expressed in metastatic melanoma cells, and transcript levels correlated with degree of GLIPR1 promoter methylation in vitro. Elevated GLIPR1 levels were correlated with increased invasive potential, and siRNA-mediated knockdown of GLIPR1 expression resulted in reduced cell migration and proliferation in vitro. Immunohistochemical studies of melanoma tissue microarrays showed moderate to high staining for GLIPR1 in 50% of specimens analyzed. GLIPR1 staining was observed in normal skin in merocrine sweat glands, sebaceous glands, and hair follicles within the dermis.
RESUMEN
BACKGROUND: We are investigating the molecular basis of melanoma by defining genomic characteristics that correlate with tumour phenotype in a novel panel of metastatic melanoma cell lines. The aim of this study is to identify new prognostic markers and therapeutic targets that might aid clinical cancer diagnosis and management. PRINCIPAL FINDINGS: Global transcript profiling identified a signature featuring decreased expression of developmental and lineage specification genes including MITF, EDNRB, DCT, and TYR, and increased expression of genes involved in interaction with the extracellular environment, such as PLAUR, VCAN, and HIF1a. Migration assays showed that the gene signature correlated with the invasive potential of the cell lines, and external validation by using publicly available data indicated that tumours with the invasive gene signature were less melanocytic and may be more aggressive. The invasion signature could be detected in both primary and metastatic tumours suggesting that gene expression conferring increased invasive potential in melanoma may occur independently of tumour stage. CONCLUSIONS: Our data supports the hypothesis that differential developmental gene expression may drive invasive potential in metastatic melanoma, and that melanoma heterogeneity may be explained by the differing capacity of melanoma cells to both withstand decreased expression of lineage specification genes and to respond to the tumour microenvironment. The invasion signature may provide new possibilities for predicting which primary tumours are more likely to metastasize, and which metastatic tumours might show a more aggressive clinical course.