RESUMEN
Protein space is characterized by extensive recurrence, or "reuse," of parts, suggesting that new proteins and domains can evolve by mixing-and-matching of existing segments. From an evolutionary perspective, for a given combination to persist, the protein segments should presumably not only match geometrically but also dynamically communicate with each other to allow concerted motions that are key to function. Evidence from protein space supports the premise that domains indeed combine in this manner; we explore whether a similar phenomenon can be observed at the sub-domain level. To this end, we use Gaussian Network Models (GNMs) to calculate the so-called soft modes, or low-frequency modes of motion for a dataset of 150 protein domains. Modes of motion can be used to decompose a domain into segments of consecutive amino acids that we call "dynamic elements", each of which belongs to one of two parts that move in opposite senses. We find that, in many cases, the dynamic elements, detected based on GNM analysis, correspond to established "themes": Sub-domain-level segments that have been shown to recur in protein space, and which were detected in previous research using sequence similarity alone (i.e. completely independently of the GNM analysis). This statistically significant correlation hints at the importance of dynamics in evolution. Overall, the results are consistent with an evolutionary scenario where proteins have emerged from themes that need to match each other both geometrically and dynamically, e.g. to facilitate allosteric regulation.
Asunto(s)
Evolución Molecular , Proteínas , Proteínas/metabolismo , Proteínas/química , Dominios ProteicosRESUMEN
Amyloids, protein, and peptide assemblies in various organisms are crucial in physiological and pathological processes. Their intricate structures, however, present significant challenges, limiting our understanding of their functions, regulatory mechanisms, and potential applications in biomedicine and technology. This study evaluated the AlphaFold2 ColabFold method's structure predictions for antimicrobial amyloids, using eight antimicrobial peptides (AMPs), including those with experimentally determined structures and AMPs known for their distinct amyloidogenic morphological features. Additionally, two well-known human amyloids, amyloid-ß and islet amyloid polypeptide, were included in the analysis due to their disease relevance, short sequences, and antimicrobial properties. Amyloids typically exhibit tightly mated ß-strand sheets forming a cross-ß configuration. However, certain amphipathic α-helical subunits can also form amyloid fibrils adopting a cross-α structure. Some AMPs in the study exhibited a combination of cross-α and cross-ß amyloid fibrils, adding complexity to structure prediction. The results showed that the AlphaFold2 ColabFold models favored α-helical structures in the tested amyloids, successfully predicting the presence of α-helical mated sheets and a hydrophobic core resembling the cross-α configuration. This implies that the AI-based algorithms prefer assemblies of the monomeric state, which was frequently predicted as helical, or capture an α-helical membrane-active form of toxic peptides, which is triggered upon interaction with lipid membranes.