Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38317457

RESUMEN

BACKGROUND: Clinical variability among individuals with heterozygous pathogenic/likely pathogenic (P/LP) variants in the COL4A3/COL4A4 genes (also called autosomal dominant Alport syndrome or COL4A3/COL4A4 related disorder) is huge; many individuals are asymptomatic or show microhematuria, while others may develop proteinuria and chronic kidney disease (CKD). The prevalence of simple kidney cysts (KC) in the general population varies according to age, and patients with advanced CKD are prone to have them. A possible association between heterozygous COL4A3, COL4A4, and COL4A5 P/LP variants and KC has been described in small cohorts. The presence of KC in a multicenter cohort of individuals with heterozygous P/LP variants in the COL4A3/COL4A4 genes is assessed in this study. METHODS: We evaluated the presence of KC by ultrasound in 157 individuals with P/LP variants in COL4A3 (40.7%) or COL4A4 (53.5%) without kidney replacement therapy. The association between presence of KC and age, proteinuria, eGFR, and causative gene was analyzed. Prevalence of KC was compared with historical case series in the general population. RESULTS: Half of the individuals with P/LP variants in COL4A3/COL4A4 showed KC, which is a significantly higher percentage than in the general population. Only 3.8% (6/157) had cystic nephromegaly. Age and eGFR showed an association with the presence of KC (p<0.001). No association was found between KC and proteinuria, sex, or causative gene. CONCLUSIONS: Individuals with COL4A3/COL4A4 P/LP variants are prone to develop KC more frequently than the general population, and their presence is related to age and to eGFR. Neither proteinuria, sex nor the causative gene influences the presence of KC in these individuals.

2.
J Med Genet ; 59(1): 28-38, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-33106379

RESUMEN

BACKGROUND: C-type natriuretic peptide (CNP), its endogenous receptor, natriuretic peptide receptor-B (NPR-B), as well as its downstream mediator, cyclic guanosine monophosphate (cGMP) dependent protein kinase II (cGKII), have been shown to play a pivotal role in chondrogenic differentiation and endochondral bone growth. In humans, biallelic variants in NPR2, encoding NPR-B, cause acromesomelic dysplasia, type Maroteaux, while heterozygous variants in NPR2 (natriuretic peptide receptor 2) and NPPC (natriuretic peptide precursor C), encoding CNP, cause milder phenotypes. In contrast, no variants in cGKII, encoded by the protein kinase cGMP-dependent type II gene (PRKG2), have been reported in humans to date, although its role in longitudinal growth has been clearly demonstrated in several animal models. METHODS: Exome sequencing was performed in two girls with severe short stature due to acromesomelic limb shortening, brachydactyly, mild to moderate platyspondyly and progressively increasing metaphyseal alterations of the long bones. Functional characterisation was undertaken for the identified variants. RESULTS: Two homozygous PRKG2 variants, a nonsense and a frameshift, were identified. The mutant transcripts are exposed to nonsense-mediated decay and the truncated mutant cGKII proteins, partially or completely lacking the kinase domain, alter the downstream mitogen activation protein kinase signalling pathway by failing to phosphorylate c-Raf 1 at Ser43 and subsequently reduce ERK1/2 activation in response to fibroblast growth factor 2. They also downregulate COL10A1 and upregulate COL2A1 expression through SOX9. CONCLUSION: In conclusion, we have clinically and molecularly characterised a new acromesomelic dysplasia, acromesomelic dysplasia, PRKG2 type (AMDP).


Asunto(s)
Proteína Quinasa Dependiente de GMP Cíclico Tipo II/genética , Enanismo/genética , Mutación , Osteocondrodisplasias/genética , Braquidactilia , Niño , Enanismo/metabolismo , Femenino , Humanos , Osteocondrodisplasias/metabolismo , Linaje , Secuenciación del Exoma
4.
Am J Hum Genet ; 103(2): 221-231, 2018 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-30057030

RESUMEN

Bloom syndrome, caused by biallelic mutations in BLM, is characterized by prenatal-onset growth deficiency, short stature, an erythematous photosensitive malar rash, and increased cancer predisposition. Diagnostically, a hallmark feature is the presence of increased sister chromatid exchanges (SCEs) on cytogenetic testing. Here, we describe biallelic mutations in TOP3A in ten individuals with prenatal-onset growth restriction and microcephaly. TOP3A encodes topoisomerase III alpha (TopIIIα), which binds to BLM as part of the BTRR complex, and promotes dissolution of double Holliday junctions arising during homologous recombination. We also identify a homozygous truncating variant in RMI1, which encodes another component of the BTRR complex, in two individuals with microcephalic dwarfism. The TOP3A mutations substantially reduce cellular levels of TopIIIα, and consequently subjects' cells demonstrate elevated rates of SCE. Unresolved DNA recombination and/or replication intermediates persist into mitosis, leading to chromosome segregation defects and genome instability that most likely explain the growth restriction seen in these subjects and in Bloom syndrome. Clinical features of mitochondrial dysfunction are evident in several individuals with biallelic TOP3A mutations, consistent with the recently reported additional function of TopIIIα in mitochondrial DNA decatenation. In summary, our findings establish TOP3A mutations as an additional cause of prenatal-onset short stature with increased cytogenetic SCEs and implicate the decatenation activity of the BTRR complex in their pathogenesis.

5.
J Med Genet ; 57(4): 258-268, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31586946

RESUMEN

PURPOSE: Patients with Fanconi anaemia (FA), a rare DNA repair genetic disease, exhibit chromosome fragility, bone marrow failure, malformations and cancer susceptibility. FA molecular diagnosis is challenging since FA is caused by point mutations and large deletions in 22 genes following three heritability patterns. To optimise FA patients' characterisation, we developed a simplified but effective methodology based on whole exome sequencing (WES) and functional studies. METHODS: 68 patients with FA were analysed by commercial WES services. Copy number variations were evaluated by sequencing data analysis with RStudio. To test FANCA missense variants, wt FANCA cDNA was cloned and variants were introduced by site-directed mutagenesis. Vectors were then tested for their ability to complement DNA repair defects of a FANCA-KO human cell line generated by TALEN technologies. RESULTS: We identified 93.3% of mutated alleles including large deletions. We determined the pathogenicity of three FANCA missense variants and demonstrated that two FANCA variants reported in mutations databases as 'affecting functions' are SNPs. Deep analysis of sequencing data revealed patients' true mutations, highlighting the importance of functional analysis. In one patient, no pathogenic variant could be identified in any of the 22 known FA genes, and in seven patients, only one deleterious variant could be identified (three patients each with FANCA and FANCD2 and one patient with FANCE mutations) CONCLUSION: WES and proper bioinformatics analysis are sufficient to effectively characterise patients with FA regardless of the rarity of their complementation group, type of mutations, mosaic condition and DNA source.


Asunto(s)
Secuenciación del Exoma , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Anemia de Fanconi/genética , Predisposición Genética a la Enfermedad , Línea Celular , Variaciones en el Número de Copia de ADN/genética , Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Anemia de Fanconi/patología , Femenino , Técnicas de Inactivación de Genes , Humanos , Masculino , Mutación Missense/genética , Polimorfismo de Nucleótido Simple/genética
6.
Genet Med ; 20(1): 91-97, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28661490

RESUMEN

PurposeC-type natriuretic peptide (CNP) and its principal receptor, natriuretic peptide receptor B (NPR-B), have been shown to be important in skeletal development. CNP and NPR-B are encoded by natriuretic peptide precursor-C (NPPC) and natriuretic peptide receptor 2 (NPR2) genes, respectively. While NPR2 mutations have been described in patients with skeletal dysplasias and idiopathic short stature (ISS), and several Npr2 and Nppc skeletal dysplasia mouse models exist, no mutations in NPPC have been described in patients to date.MethodsNPPC was screened in 668 patients (357 with disproportionate short stature and 311 with autosomal dominant ISS) and 29 additional ISS families in an ongoing whole-exome sequencing study.ResultsTwo heterozygous NPPC mutations, located in the highly conserved CNP ring, were identified. Both showed significant reductions in cyclic guanosine monophosphate synthesis, confirming their pathogenicity. Interestingly, one has been previously linked to skeletal abnormalities in the spontaneous Nppc mouse long-bone abnormality (lbab) mutant.ConclusionsOur results demonstrate, for the first time, that NPPC mutations cause autosomal dominant short stature in humans. The NPPC mutations cosegregated with a short stature and small hands phenotype. A CNP analog, which is currently in clinical trials for the treatment of achondroplasia, seems a promising therapeutic approach, since it directly replaces the defective protein.


Asunto(s)
Enanismo/diagnóstico , Enanismo/genética , Genes Dominantes , Mutación , Péptido Natriurético Tipo-C/genética , Adolescente , Secuencia de Aminoácidos , Niño , Biología Computacional/métodos , Análisis Mutacional de ADN , Femenino , Gráficos de Crecimiento , Heterocigoto , Humanos , Masculino , Péptido Natriurético Tipo-C/química , Fenotipo , Secuenciación del Exoma
7.
Clin Endocrinol (Oxf) ; 88(6): 820-829, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29464738

RESUMEN

OBJECTIVE: Mutations in the aggrecan gene (ACAN) have been identified in two autosomal dominant skeletal dysplasias, spondyloepiphyseal dysplasia, Kimberley type (SEDK), and osteochondritis dissecans, as well as in a severe recessive dysplasia, spondyloepimetaphyseal dysplasia, aggrecan type. Next-generation sequencing (NGS) has aided the identification of heterozygous ACAN mutations in individuals with short stature, minor skeletal defects and mild facial dysmorphisms, some of whom have advanced bone age (BA), poor pubertal spurt and early growth cessation as well as precocious osteoarthritis. DESIGN AND METHODS: This study involves clinical and genetic characterization of 16 probands with heterozygous ACAN variants, 14 with short stature and mild skeletal defects (group 1) and two with SEDK (group 2). Subsequently, we reviewed the literature to determine the frequency of the different clinical characteristics in ACAN-positive individuals. RESULTS: A total of 16 ACAN variants were located throughout the gene, six pathogenic mutations and 10 variants of unknown significance (VUS). Interestingly, brachydactyly was observed in all probands. Probands from group 1 with a pathogenic mutation tended to be shorter, and 60% had an advanced BA compared to 0% in those with a VUS. A higher incidence of coxa valga was observed in individuals with a VUS (37% vs 0%). Nevertheless, other features were present at similar frequencies. CONCLUSIONS: ACAN should be considered as a candidate gene in patients with short stature and minor skeletal defects, particularly those with brachydactyly, and in patients with spondyloepiphyseal dysplasia. It is also important to note that advanced BA and osteoarticular complications are not obligatory conditions for aggrecanopathies/aggrecan-associated dysplasias.


Asunto(s)
Agrecanos/genética , Braquidactilia/genética , Adolescente , Niño , Preescolar , Femenino , Heterocigoto , Humanos , Lactante , Masculino , Mutación/genética
8.
Hum Mutat ; 38(11): 1471-1476, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28730625

RESUMEN

Craniosynostosis is commonly caused by mutations in fibroblast growth factor receptors (FGFRs), highlighting the essential role of FGF-mediated signaling in skeletal development. We set out to identify the molecular defect in a family referred for craniosynostosis and in whom no mutation was previously detected. Using next-generation sequencing, we identified a novel missense mutation in FGF9. Modeling based upon the crystal structure and functional studies confirmed its pathogenicity showing that it impaired homodimerization and FGFR3 binding. Only one FGF9 mutation has been previously reported in a multigeneration family with multiple synostoses (SYNS3) but no signs of craniosynostosis. In contrast, our family has a greater phenotypic resemblance to that observed in the Fgf9 spontaneous mouse mutant, elbow-knee-synostosis, Eks, with both multiple synostoses and craniosynostosis. We have demonstrated for the first time that mutations in FGF9 cause craniosynostosis in humans and confirm that FGF9 mutations cause multiple synostoses.


Asunto(s)
Craneosinostosis/diagnóstico , Craneosinostosis/genética , Factor 9 de Crecimiento de Fibroblastos/genética , Mutación , Fenotipo , Sinostosis/diagnóstico , Sinostosis/genética , Sustitución de Aminoácidos , Factor 9 de Crecimiento de Fibroblastos/química , Estudios de Asociación Genética , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Modelos Moleculares , Linaje , Conformación Proteica , Multimerización de Proteína , Radiografía , Transducción de Señal , Relación Estructura-Actividad
9.
J Hum Genet ; 62(2): 229-234, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27604558

RESUMEN

Short stature homeobox gene (SHOX) is located in the pseudoautosomal region 1 of the sex chromosomes. It encodes a transcription factor implicated in the skeletal growth. Point mutations, deletions or duplications of SHOX or its transcriptional regulatory elements are associated with two skeletal dysplasias, Léri-Weill dyschondrosteosis (LWD) and Langer mesomelic dysplasia (LMD), as well as in a small proportion of idiopathic short stature (ISS) individuals. We have identified a total of 15 partial SHOX deletions and 13 partial SHOX duplications in LWD, LMD and ISS patients referred for routine SHOX diagnostics during a 10 year period (2004-2014). Subsequently, we characterized these alterations using MLPA (multiplex ligation-dependent probe amplification assay), fine-tiling array CGH (comparative genomic hybridation) and breakpoint PCR. Nearly half of the alterations have a distal or proximal breakpoint in intron 3. Evaluation of our data and that in the literature reveals that although partial deletions and duplications only account for a small fraction of SHOX alterations, intron 3 appears to be a breakpoint hotspot, with alterations arising by non-allelic homologous recombination, non-homologous end joining or other complex mechanisms.


Asunto(s)
Duplicación de Gen/genética , Trastornos del Crecimiento/genética , Proteínas de Homeodominio/genética , Osteocondrodisplasias/genética , Eliminación de Secuencia/genética , Secuencia de Bases , Hibridación Genómica Comparativa , Humanos , Intrones/genética , Reacción en Cadena de la Polimerasa Multiplex , Técnicas de Amplificación de Ácido Nucleico , Análisis de Secuencia de ADN , Proteína de la Caja Homeótica de Baja Estatura
11.
Genes (Basel) ; 15(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38927615

RESUMEN

X-linked hypophosphatemia (XLH) is a rare inherited disorder of renal phosphate wasting with a highly variable phenotype caused by loss-of-function variants in the PHEX gene. The diagnosis of individuals with mild phenotypes can be challenging and often delayed. Here, we describe a three-generation family with a very mild clinical presentation of XLH. The diagnosis was unexpectedly found in a 39-year-old woman who was referred for genetic testing due to an unclear childhood diagnosis of a tubulopathy. Genetic testing performed by next-generation sequencing using a kidney disease gene panel identified a novel non-canonical splice site variant in the PHEX gene. Segregation analysis detected that the consultand's father, who presented with hypophosphatemia and decreased tubular phosphate reabsorption, and the consultand's son also carried this variant. RNA studies demonstrated that the non-canonical splice site variant partially altered the splicing of the PHEX gene, as both wild-type and aberrant splicing transcripts were detected in the two male members with only one copy of the PHEX gene. In conclusion, this case contributes to the understanding of the relationship between splicing variants and the variable expressivity of XLH disease. The mild phenotype of this family can be explained by the coexistence of PHEX transcripts with aberrant and wild-type splicing.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Endopeptidasa Neutra Reguladora de Fosfato PHEX , Linaje , Sitios de Empalme de ARN , Humanos , Endopeptidasa Neutra Reguladora de Fosfato PHEX/genética , Adulto , Femenino , Raquitismo Hipofosfatémico Familiar/genética , Masculino , Sitios de Empalme de ARN/genética , Empalme del ARN/genética , Fenotipo , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación
12.
Hum Mol Genet ; 20(8): 1547-59, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21262861

RESUMEN

SHOX (short stature homeobox-containing gene) encodes a transcription factor implicated in skeletal development. SHOX haploinsufficiency has been demonstrated in Leri-Weill dyschondrosteosis (LWD), a skeletal dysplasia associated with disproportionate short stature, as well as in a variable proportion of cases with idiopathic short stature (ISS). In order to gain insight into the SHOX signalling pathways, we performed a yeast two-hybrid screen to identify SHOX-interacting proteins. Two transcription factors, SOX5 and SOX6, were identified. Co-immunoprecipitation assays confirmed the existence of the SHOX-SOX5 and SHOX-SOX6 interactions in human cells, whereas immunohistochemical studies demonstrated the coexpression of these proteins in 18- and 32-week human fetal growth plates. The SHOX homeodomain and the SOX6 HMG domain were shown to be implicated in the SHOX-SOX6 interaction. Moreover, different SHOX missense mutations, identified in LWD and ISS patients, disrupted this interaction. The physiological importance of these interactions was investigated by studying the effect of SHOX on a transcriptional target of the SOX trio, Agc1, which encodes one of the main components of cartilage, aggrecan. Our results show that SHOX cooperates with SOX5/SOX6 and SOX9 in the activation of the upstream Agc1 enhancer and that SHOX mutations affect this activation. In conclusion, we have identified SOX5 and SOX6 as the first two SHOX-interacting proteins and have shown that this interaction regulates aggrecan expression, an essential factor in chondrogenesis and skeletal development.


Asunto(s)
Elementos de Facilitación Genéticos , Proteínas de Homeodominio/metabolismo , Factores de Transcripción SOXD/metabolismo , Agrecanos/genética , Animales , Condrogénesis/genética , Desarrollo Fetal/genética , Genes Reporteros , Trastornos del Crecimiento/genética , Placa de Crecimiento/embriología , Placa de Crecimiento/metabolismo , Células HEK293 , Proteínas de Homeodominio/genética , Humanos , Inmunoprecipitación , Luciferasas de Luciérnaga/biosíntesis , Luciferasas de Luciérnaga/genética , Ratones , Complejos Multiproteicos/metabolismo , Mutación Missense , Osteocondrodisplasias/genética , Fragmentos de Péptidos/metabolismo , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes de Fusión/metabolismo , Proteína de la Caja Homeótica de Baja Estatura , Técnicas del Sistema de Dos Híbridos
13.
Eur J Med Genet ; 66(11): 104867, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37839784

RESUMEN

Osteogenesis imperfecta (OI) type VI is an extremely rare form of OI caused by biallelic variants in the SERPINF1 gene, which codes for the pigment-epithelium derived factor (PEDF). We report on four patients (three adults and one adolescent) with a severe deforming form of OI. All patients presented no abnormalities at birth, frequent long bone and vertebrae fractures (mainly during childhood), marked short stature, severe bone deformities, chronic mild to moderate pain, and severe limitation of mobility, with three being completely wheelchair bound. Blue sclera and dentinogenesis imperfecta were absent, although some patients presented tooth, ophthalmological, and/or cardiac features. Radiographic findings included, among others, thin diaphysis and popcorn calcifications, both of which are non-specific to this type of OI. The novel homozygous variants c.816_819del (p.Met272Ilefs*8) and c.283+2T > G in SERPINF1 were identified in three and one patient, respectively. The three patients carrying the frameshift variant were born in nearby regions suggesting a founder effect. Describing the long-term outcomes of four patients with OI type VI, this cohort adds relevant data on the clinical features and prognosis of this type of OI.


Asunto(s)
Osteogénesis Imperfecta , Serpinas , Adolescente , Adulto , Humanos , Recién Nacido , Colágeno Tipo I/genética , Mutación del Sistema de Lectura , Homocigoto , Osteogénesis Imperfecta/genética , Serpinas/genética
14.
Genes (Basel) ; 13(11)2022 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-36360300

RESUMEN

Multiple Osteochondromatosis (MO, MIM 133700 & 133701), an autosomal dominant O-glycosylation disorder (EXT1/EXT2-CDG), can be associated with a reduction in skeletal growth, bony deformity, restricted joint motion, shortened stature and pathogenic variants in two tumor suppressor genes, EXT1 and EXT2. In this work, we report a cross-sectional study including 35 index patients and 20 affected family members. Clinical phenotyping of all 55 affected cases was obtained, but genetic studies were performed only in 35 indexes. Of these, a total of 40% (n = 14) had a family history of MO. Clinical severity scores were class I in 34% (n:18), class II in 24.5% (n:13) and class III in 41.5% (n:22). Pathogenic variants were identified in 83% (29/35) probands. We detected 18 (62%) in EXT1 and 11 (38%) in EXT2. Patients with EXT1 variants showed a height z-score of 1.03 SD lower than those with EXT2 variants and greater clinical severity (II-III vs. I). Interestingly, three patients showed intellectual impairment, two patients showed a dual diagnosis, one Turner Syndrome and one hypochondroplasia. This study improves knowledge of MO, reporting new pathogenic variants and forwarding the worldwide collaboration necessary to promote the inclusion of patients into future biologically based therapeutics.


Asunto(s)
Exostosis Múltiple Hereditaria , Humanos , Exostosis Múltiple Hereditaria/genética , Exostosis Múltiple Hereditaria/diagnóstico , Estudios Transversales , N-Acetilglucosaminiltransferasas/genética , Mutación , Pruebas Genéticas
15.
J Pediatr Endocrinol Metab ; 24(5-6): 395-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21823545

RESUMEN

Familial glucocorticoid deficiency (FGD) is a rare autosomal recessive disorder characterized by isolated glucocorticoid deficiency. Mutations in the ACTH receptor (melanocortin 2 receptor, MC2R) or the MC2R accessory protein (MRAP) cause FGD types 1 and 2, respectively. A 2-year-old adopted Chinese girl presented with hypertonic seizures associated with hypoglycemia, skin hyperpigmentation, muscle weakness and mild jaundice. Hormonal analyses revealed high ACTH, low serum cortisol along with normal blood electrolytes. On hydrocortisone supplementation, the disease symptoms disappeared and the child recovered, although further episodes occurred with infection. To date, her physical and neurocognitive development progress is normal. A clinical diagnosis of FGD was given. We undertook MC2R and MRAP mutation screening. Two novel MC2R mutations were identified: p.D107G localized in the transmembrane region, predicted to be trafficking-competent but is unable to bind to ACTH, and p.R145C, situated in the second intracellular loop, predicted to be trafficking-defective.


Asunto(s)
Glucocorticoides/deficiencia , Mutación Missense , Receptor de Melanocortina Tipo 2/genética , Alelos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Pueblo Asiatico/genética , Secuencia de Bases , Preescolar , ADN/genética , Análisis Mutacional de ADN , Femenino , Heterocigoto , Humanos , Hidrocortisona/uso terapéutico , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
16.
Eur J Med Genet ; 64(5): 104198, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33746040

RESUMEN

More than two decades since the first clinical and radiological description of odontochondroplasia (ODCD) was reported, biallelic loss of function variants in the Thyroid hormone receptor interactor 11 gene (TRIP11) were identified, the same gene implicated in the lethal disorder achondrogenesis (ACG1A). Here we report the clinical and radiological follow-up of four ODCD patients, including two siblings and an adult who interestingly has the mildest form observed to date. Four TRIP11 variants were detected, two previously unreported. Subsequently, we review the clinical and radiological findings of the 14 reported ODCD patients. The majority of ODCD patients are compound heterozygotes for TRIP11 variants, 12/14 have a null allele and a splice variant whilst one is homozygous for an in-frame splicing variant, with the splice variants resulting in residual GMAP activity and hypothesized to explain why they have ODCD and not ACG1A. However, adult patient 4 has two potentially null alleles and it remains unknown why she has very mild clinical features. The c.586C>T; p.(Gln196*) variant, previously shown by mRNA studies to result in p.Val105_Gln196del, is the most frequent variant, present in seven individuals from four families, three from different regions of the world, suggesting that it may be a variant hotspot. Another variant, c.2993_2994del; p.(Lys998Serfs*5), has been observed in two individuals with a possible common ancestor. In summary, although there are clinical and radiological characteristics common to all individuals, we demonstrate that the clinical spectrum of TRIP11-associated dysplasias is even more diverse than previously described and that common genetic variants may exist.


Asunto(s)
Proteínas del Citoesqueleto/genética , Odontodisplasia/genética , Osteocondrodisplasias/genética , Fenotipo , Adulto , Niño , Femenino , Humanos , Mutación con Pérdida de Función , Masculino , Odontodisplasia/diagnóstico por imagen , Odontodisplasia/patología , Osteocondrodisplasias/diagnóstico por imagen , Osteocondrodisplasias/patología
17.
NPJ Breast Cancer ; 7(1): 117, 2021 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-34504103

RESUMEN

The tumor suppressor FANCD1/BRCA2 is crucial for DNA homologous recombination repair (HRR). BRCA2 biallelic pathogenic variants result in a severe form of Fanconi anemia (FA) syndrome, whereas monoallelic pathogenic variants cause mainly hereditary breast and ovarian cancer predisposition. For decades, the co-occurrence in trans with a clearly pathogenic variant led to assume that the other allele was benign. However, here we show a patient with biallelic BRCA2 (c.1813dup and c.7796 A > G) diagnosed at age 33 with FA after a hypertoxic reaction to chemotherapy during breast cancer treatment. After DNA damage, patient cells displayed intermediate chromosome fragility, reduced survival, cell cycle defects, and significantly decreased RAD51 foci formation. With a newly developed cell-based flow cytometric assay, we measured single BRCA2 allele contributions to HRR, and found that expression of the missense allele in a BRCA2 KO cellular background partially recovered HRR activity. Our data suggest that a hypomorphic BRCA2 allele retaining 37-54% of normal HRR function can prevent FA clinical phenotype, but not the early onset of breast cancer and severe hypersensitivity to chemotherapy.

18.
Eur J Endocrinol ; 185(5): 691-705, 2021 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-34516402

RESUMEN

OBJECTIVE: Next generation sequencing (NGS) has expanded the diagnostic paradigm turning the focus to the growth plate. The aim of the study was to determine the prevalence of variants in genes implicated in skeletal dysplasias in probands with short stature and mild skeletal anomalies. DESIGN: Clinical and radiological data were collected from 108 probands with short stature and mild skeletal anomalies. METHODS: A customized skeletal dysplasia NGS panel was performed. Variants were classified using ACMG recommendations and Sherloc. Anthropometric measurements and skeletal anomalies were subsequently compared in those with or without an identified genetic defect. RESULTS: Heterozygous variants were identified in 21/108 probands (19.4%). Variants were most frequently identified in ACAN (n = 10) and IHH (n = 7) whilst one variant was detected in COL2A1, CREBBP, EXT1, and PTPN11. Statistically significant differences (P < 0.05) were observed for sitting height/height (SH/H) ratio, SH/H ratio standard deviation score (SDS), and the SH/H ratio SDS >1 in those with an identified variant compared to those without. CONCLUSIONS: A molecular defect was elucidated in a fifth of patients. Thus, the prevalence of mild forms of skeletal dysplasias is relatively high in individuals with short stature and mild skeletal anomalies, with variants in ACAN and IHH accounting for 81% of the cases. An elevated SH/H ratio appears to be associated with a greater probability in detecting a variant, but no other clinical or radiological feature has been found determinant to finding a genetic cause. Currently, we cannot perform extensive molecular studies in all short stature individuals so detailed clinical and radiological phenotyping may orientate which are the candidate patients to obtain worthwhile results. In addition, detailed phenotyping of probands and family members will often aid variant classification.


Asunto(s)
Estatura/genética , Huesos/anomalías , Enanismo/genética , Osteocondrodisplasias/genética , Adolescente , Antropometría , Niño , Preescolar , Femenino , Variación Genética , Placa de Crecimiento/anomalías , Heterocigoto , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Lactante , Masculino , Linaje , Prevalencia
19.
J Pediatr Genet ; 9(1): 48-52, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31976144

RESUMEN

Hypochondroplasia (HCH), a skeletal dysplasia caused by mutations in the fibroblast growth factor receptor 3 ( FGFR3 ) gene, is characterized by disproportionate short stature. The p.Asn540Lys (p.N540K) mutation accounts for ∼50 to 70% of cases of HCH, but novel FGFR3 mutations are described. We present a family with disproportionately short stature and mild radiologic findings seen in a major public pediatric hospital in Argentina. A previously undescribed heterozygous missense variant in FGFR3, NM_000142.4:667C > T; p.(Arg223Cys) was identified. The predicted phenotype correlates well with the mild auxologic and radiologic characteristics observed. In this case, disproportionately short stature raised the suspicion of skeletal dysplasia.

20.
Orphanet J Rare Dis ; 15(1): 170, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32605631

RESUMEN

BACKGROUND: Fanconi anemia is a rare disease clinically characterized by malformations, bone marrow failure and an increased risk of solid tumors and hematologic malignancies. The only therapies available are hematopoietic stem cell transplantation for bone marrow failure or leukemia, and surgical resection for solid tumors. Therefore, there is still an urgent need for new therapeutic options. With this aim, we developed a novel high-content cell-based screening assay to identify drugs with therapeutic potential in FA. RESULTS: A TALEN-mediated FANCA-deficient U2OS cell line was stably transfected with YFP-FANCD2 fusion protein. These cells were unable to form fluorescent foci or to monoubiquitinate endogenous or exogenous FANCD2 upon DNA damage and were more sensitive to mitomycin C when compared to the parental wild type counterpart. FANCA correction by retroviral infection restored the cell line's ability to form FANCD2 foci and ubiquitinate FANCD2. The feasibility of this cell-based system was interrogated in a high content screening of 3802 compounds, including a Prestwick library of 1200 FDA-approved drugs. The potential hits identified were then individually tested for their ability to rescue FANCD2 foci and monoubiquitination, and chromosomal stability in the absence of FANCA. CONCLUSIONS: While, unfortunately, none of the compounds tested were able to restore cellular FANCA-deficiency, our study shows the potential capacity to screen large compound libraries in the context of Fanconi anemia therapeutics in an optimized and cost-effective platform.


Asunto(s)
Anemia de Fanconi , Daño del ADN , Evaluación Preclínica de Medicamentos , Anemia de Fanconi/tratamiento farmacológico , Anemia de Fanconi/genética , Proteína del Grupo de Complementación A de la Anemia de Fanconi/genética , Proteína del Grupo de Complementación D2 de la Anemia de Fanconi/genética , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda