RESUMEN
With the emergence of delay- and energy-critical vehicular applications, forwarding sense-actuate data from vehicles to the cloud became practically infeasible. Therefore, a new computational model called Vehicular Fog Computing (VFC) was proposed. It offloads the computation workload from passenger devices (PDs) to transportation infrastructures such as roadside units (RSUs) and base stations (BSs), called static fog nodes. It can also exploit the underutilized computation resources of nearby vehicles that can act as vehicular fog nodes (VFNs) and provide delay- and energy-aware computing services. However, the capacity planning and dimensioning of VFC, which come under a class of facility location problems (FLPs), is a challenging issue. The complexity arises from the spatio-temporal dynamics of vehicular traffic, varying resource demand from PD applications, and the mobility of VFNs. This paper proposes a multi-objective optimization model to investigate the facility location in VFC networks. The solutions to this model generate optimal VFC topologies pertaining to an optimized trade-off (Pareto front) between the service delay and energy consumption. Thus, to solve this model, we propose a hybrid Evolutionary Multi-Objective (EMO) algorithm called Swarm Optimized Non-dominated sorting Genetic algorithm (SONG). It combines the convergence and search efficiency of two popular EMO algorithms: the Non-dominated Sorting Genetic Algorithm (NSGA-II) and Speed-constrained Particle Swarm Optimization (SMPSO). First, we solve an example problem using the SONG algorithm to illustrate the delay-energy solution frontiers and plotted the corresponding layout topology. Subsequently, we evaluate the evolutionary performance of the SONG algorithm on real-world vehicular traces against three quality indicators: Hyper-Volume (HV), Inverted Generational Distance (IGD) and CPU delay gap. The empirical results show that SONG exhibits improved solution quality over the NSGA-II and SMPSO algorithms and hence can be utilized as a potential tool by the service providers for the planning and design of VFC networks.
Asunto(s)
Algoritmos , Transportes , Fenómenos Físicos , Evolución BiológicaRESUMEN
A disturbance/uncertainty estimation and disturbance rejection technique are proposed in this work and verified on a ground two-wheel differential drive mobile robot (DDMR) in the presence of a mismatched disturbance. The offered scheme is the an improved active disturbance rejection control (IADRC) approach-based enhanced dynamic speed controller. To efficiently eliminate the effect produced by the system uncertainties and external torque disturbance on both wheels, the IADRC is adopted, whereby all the torque disturbances and DDMR parameter uncertainties are conglomerated altogether and considered a generalized disturbance. This generalized disturbance is observed and cancelled by a novel nonlinear sliding mode extended state observer (NSMESO) in real-time. Through numerical simulations, various performance indices are measured, with a reduction of 86% and 97% in the ITAE index for the right and left wheels, respectively. Finally, these indices validate the efficacy of the proposed dynamic speed controller by almost damping the chattering phenomena and supplying a high insusceptibility in the closed-loop system against torque disturbance.
RESUMEN
Every year, nearly two million people die as a result of gastrointestinal (GI) disorders. Lower gastrointestinal tract tumors are one of the leading causes of death worldwide. Thus, early detection of the type of tumor is of great importance in the survival of patients. Additionally, removing benign tumors in their early stages has more risks than benefits. Video endoscopy technology is essential for imaging the GI tract and identifying disorders such as bleeding, ulcers, polyps, and malignant tumors. Videography generates 5000 frames, which require extensive analysis and take a long time to follow all frames. Thus, artificial intelligence techniques, which have a higher ability to diagnose and assist physicians in making accurate diagnostic decisions, solve these challenges. In this study, many multi-methodologies were developed, where the work was divided into four proposed systems; each system has more than one diagnostic method. The first proposed system utilizes artificial neural networks (ANN) and feed-forward neural networks (FFNN) algorithms based on extracting hybrid features by three algorithms: local binary pattern (LBP), gray level co-occurrence matrix (GLCM), and fuzzy color histogram (FCH) algorithms. The second proposed system uses pre-trained CNN models which are the GoogLeNet and AlexNet based on the extraction of deep feature maps and their classification with high accuracy. The third proposed method uses hybrid techniques consisting of two blocks: the first block of CNN models (GoogLeNet and AlexNet) to extract feature maps; the second block is the support vector machine (SVM) algorithm for classifying deep feature maps. The fourth proposed system uses ANN and FFNN based on the hybrid features between CNN models (GoogLeNet and AlexNet) and LBP, GLCM and FCH algorithms. All the proposed systems achieved superior results in diagnosing endoscopic images for the early detection of lower gastrointestinal diseases. All systems produced promising results; the FFNN classifier based on the hybrid features extracted by GoogLeNet, LBP, GLCM and FCH achieved an accuracy of 99.3%, precision of 99.2%, sensitivity of 99%, specificity of 100%, and AUC of 99.87%.
Asunto(s)
Aprendizaje Profundo , Enfermedades Gastrointestinales , Algoritmos , Inteligencia Artificial , Diagnóstico Precoz , Enfermedades Gastrointestinales/diagnóstico por imagen , Humanos , Redes Neurales de la ComputaciónRESUMEN
The exponential growth of intelligent vehicles(IVs) development has resulted in a complex network. As the number of IVs in a network increases, so does the number of connections. As a result, a great deal of data is generated. This complexity leads to insecure communication, traffic congestion, security, and privacy issues in vehicular networks (VNs). In addition, detecting malicious IVs, data integration, and data validation are major issues in VNs that affect network performance. A blockchain-based model for secure communication and malicious IV detection is proposed to address the above issues. In addition, this system also addresses data integration and transaction validation using an encryption scheme for secure communication. A multi-chain concept separates the legitimate and malicious data into two chains: the Integrity chain (I-chain) and Fraud chain (F-chain). This multi-chain mechanism solves the storage problem and reduces the computing power. The integration of blockchain in the proposed model provides privacy, network security, transparency, and immutability. To address the storage issue, the InterPlanetary File System (IPFS) is integrated with Certificate Authority (CA). A reputation mechanism is introduced to detect malicious IVs in the network based on ratings. This reputation mechanism is also used to prevent Sybil attack. The evaluation of the proposed work is based on the cost of smart contracts and computation time. Furthermore, two attacker models are presented to prevent the selfish mining attack and the Sybil attack. Finally, a security analysis of the proposed smart contracts with their security vulnerabilities is also presented.
Asunto(s)
Cadena de Bloques , Seguridad Computacional , Comunicación , Redes de Comunicación de Computadores , PrivacidadRESUMEN
In this paper, we address the problems of fraud and anomalies in the Bitcoin network. These are common problems in e-banking and online transactions. However, as the financial sector evolves, so do the methods for fraud and anomalies. Moreover, blockchain technology is being introduced as the most secure method integrated into finance. However, along with these advanced technologies, many frauds are also increasing every year. Therefore, we propose a secure fraud detection model based on machine learning and blockchain. There are two machine learning algorithms-XGboost and random forest (RF)-used for transaction classification. The machine learning techniques train the dataset based on the fraudulent and integrated transaction patterns and predict the new incoming transactions. The blockchain technology is integrated with machine learning algorithms to detect fraudulent transactions in the Bitcoin network. In the proposed model, XGboost and random forest (RF) algorithms are used to classify transactions and predict transaction patterns. We also calculate the precision and AUC of the models to measure the accuracy. A security analysis of the proposed smart contract is also performed to show the robustness of our system. In addition, an attacker model is also proposed to protect the proposed system from attacks and vulnerabilities.
Asunto(s)
Cadena de Bloques , Algoritmos , Fraude , Aprendizaje Automático , TecnologíaRESUMEN
The enhancement of Robustness (R) has gained significant importance in Scale-Free Networks (SFNs) over the past few years. SFNs are resilient to Random Attacks (RAs). However, these networks are prone to Malicious Attacks (MAs). This study aims to construct a robust network against MAs. An Intelligent Rewiring (INTR) mechanism is proposed to optimize the network R against MAs. In this mechanism, edge rewiring is performed between the high and low degree nodes to make a robust network. The Closeness Centrality (CC) measure is utilized to determine the central nodes in the network. Based on the measure, MAs are performed on nodes to damage the network. Therefore, the connections of the neighboring nodes in the network are greatly affected by removing the central nodes. To analyze the network connectivity against the removal of nodes, the performance of CC is found to be more efficient in terms of computational time as compared to Betweenness Centrality (BC) and Eigenvector Centrality (EC). In addition, the Recalculated High Degree based Link Attacks (RHDLA) and the High Degree based Link Attacks (HDLA) are performed to affect the network connectivity. Using the local information of SFN, these attacks damage the vital portion of the network. The INTR outperforms Simulated Annealing (SA) and ROSE in terms of R by 17.8% and 10.7%, respectively. During the rewiring mechanism, the distribution of nodes' degrees remains constant.
RESUMEN
In this investigation, the adaptive fractional-order non-singular fixed-time terminal sliding mode (AFoFxNTSM) control for the uncertain dynamics of robotic manipulators with external disturbances is introduced. The idea of fractional-order non-singular fixed-time terminal sliding mode (FoFxNTSM) control is presented as the initial step. This approach, which combines the benefits of a fractional-order parameter with the advantages of NTSM, gives rapid fixed-time convergence, non-singularity, and chatter-free control inputs. After that, an adaptive control strategy is merged with the FoFxNTSM, and the resulting model is given the label AFoFxNTSM. This is done in order to account for the unknown dynamics of the system, which are caused by uncertainties and bounded external disturbances. The Lyapunov analysis reveals how stable the closed-loop system is over a fixed time. The pertinent simulation results are offered here for the purposes of evaluating and illustrating the performance of the suggested scheme applied on a PUMA 560 robot.
RESUMEN
Systems are naturally or purposely formed with functional components and connection structures [...].
RESUMEN
In order to extract efficient power generation, a wind turbine (WT) system requires an accurate maximum power point tracking (MPPT) technique. Therefore, a novel robust variable-step perturb-and-observe (RVS-P&O) algorithm was developed for the machine-side converter (MSC). The control strategy was applied on a WT based permanent-magnet synchronous generator (PMSG) to overcome the downsides of the currently published P&O MPPT methods. Particularly, two main points were involved. Firstly, a systematic step-size selection on the basis of power and speed measurement normalization was proposed; secondly, to obtain acceptable robustness for high and long wind-speed variations, a new correction to calculate the power variation was carried out. The grid-side converter (GSC) was controlled using a second-order sliding mode controller (SOSMC) with an adaptive-gain super-twisting algorithm (STA) to realize the high-quality seamless setting of power injected into the grid, a satisfactory power factor correction, a high harmonic performance of the AC source, and removal of the chatter effect compared to the traditional first-order sliding mode controller (FOSMC). Simulation results showed the superiority of the suggested RVS-P&O over the competing based P&O techniques. The RVS-P&O offered the WT an efficiency of 99.35%, which was an increase of 3.82% over the variable-step P&O algorithm. Indeed, the settling time was remarkably enhanced; it was 0.00794 s, which was better than for LS-P&O (0.0841 s), SS-P&O (0.1617 s), and VS-P&O (0.2224 s). Therefore, in terms of energy efficiency, as well as transient and steady-state response performances under various operating conditions, the RVS-P&O algorithm could be an accurate candidate for MPP online operation tracking.
RESUMEN
In this paper, the robust stabilization and synchronization of a novel chaotic system are presented. First, a novel chaotic system is presented in which this system is realized by implementing a sigmoidal function to generate the chaotic behavior of this analyzed system. A bifurcation analysis is provided in which by varying three parameters of this chaotic system, the respective bifurcations plots are generated and evinced to analyze and verify when this system is in the stability region or in a chaotic regimen. Then, a robust controller is designed to drive the system variables from the chaotic regimen to stability so that these variables reach the equilibrium point in finite time. The robust controller is obtained by selecting an appropriate robust control Lyapunov function to obtain the resulting control law. For synchronization purposes, the novel chaotic system designed in this study is used as a drive and response system, considering that the error variable is implemented in a robust control Lyapunov function to drive this error variable to zero in finite time. In the control law design for stabilization and synchronization purposes, an extra state is provided to ensure that the saturated input sector condition must be mathematically tractable. A numerical experiment and simulation results are evinced, along with the respective discussion and conclusion.
RESUMEN
Unmanned Aerial Vehicles (UAVs) have been very effective in collecting aerial images data for various Internet-of-Things (IoT)/smart cities applications such as search and rescue, surveillance, vehicle detection, counting, intelligent transportation systems, to name a few. However, the real-time processing of collected data on edge in the context of the Internet-of-Drones remains an open challenge because UAVs have limited energy capabilities, while computer vision techniquesconsume excessive energy and require abundant resources. This fact is even more critical when deep learning algorithms, such as convolutional neural networks (CNNs), are used for classification and detection. In this paper, we first propose a system architecture of computation offloading for Internet-connected drones. Then, we conduct a comprehensive experimental study to evaluate the performance in terms of energy, bandwidth, and delay of the cloud computation offloading approach versus the edge computing approach of deep learning applications in the context of UAVs. In particular, we investigate the tradeoff between the communication cost and the computation of the two candidate approaches experimentally. The main results demonstrate that the computation offloading approach allows us to provide much higher throughput (i.e., frames per second) as compared to the edge computing approach, despite the larger communication delays.
RESUMEN
A consensus control law is proposed for a multi-agent system of quadrotors with leader-follower communication topology for three quadrotor agents. The genetic algorithm (GA) is the proposed optimization technique to tune the consensus control parameters. The complete nonlinear model is used without any further simplifications in the simulations, while simplification in the model is used to theoretically design the controller. Different case studies and tests are done (i.e., trajectory tracking formation and switching topology) to show the effectiveness of the proposed controller. The results show good performance in all tests while achieving the consensus of the desired formations.
RESUMEN
Planning an optimal path for a mobile robot is a complicated problem as it allows the mobile robots to navigate autonomously by following the safest and shortest path between starting and goal points. The present work deals with the design of intelligent path planning algorithms for a mobile robot in static and dynamic environments based on swarm intelligence optimization. A modification based on the age of the ant is introduced to standard ant colony optimization, called modified aging ant colony optimization (AACO). The AACO was implemented in association with grid-based modeling for the static and dynamic environments to solve the path planning problem. The simulations are run in the MATLAB environment to test the validity of the proposed algorithms. Simulations showed that the proposed path planning algorithms result in superior performance by finding the shortest and the most free-collision path under various static and dynamic scenarios. Furthermore, the superiority of the proposed algorithms was proved through comparisons with other traditional path planning algorithms with different static environments.
Asunto(s)
Inteligencia Artificial , Computadoras de Mano , Movimiento (Física) , Robótica , Algoritmos , Simulación por Computador , Sistemas de Computación , HumanosRESUMEN
In this study, the design of an adaptive terminal sliding mode controller for the stabilization of port Hamiltonian chaotic systems with hidden attractors is proposed. This study begins with the design methodology of a chaotic oscillator with a hidden attractor implementing the topological framework for its respective design. With this technique it is possible to design a 2-D chaotic oscillator, which is then converted into port-Hamiltonia to track and analyze these models for the stabilization of the hidden chaotic attractors created by this analysis. Adaptive terminal sliding mode controllers (ATSMC) are built when a Hamiltonian system has a chaotic behavior and a hidden attractor is detected. A Lyapunov approach is used to formulate the adaptive device controller by creating a control law and the adaptive law, which are used online to make the system states stable while at the same time suppressing its chaotic behavior. The empirical tests obtaining the discussion and conclusions of this thesis should verify the theoretical findings.
RESUMEN
In this paper, a gradient descent algorithm is proposed for the parameter estimation of multi-input and multi-output (MIMO) total non-linear dynamic models. Firstly, the MIMO total non-linear model is mapped to a non-completely connected feedforward neural network, that is, the parameters of the total non-linear model are mapped to the connection weights of the neural network. Then, based on the minimization of network error, a weight-updating algorithm, that is, an estimation algorithm of model parameters, is proposed with the convergence conditions of a non-completely connected feedforward network. In further determining the variables of the model set, a method of model structure detection is proposed for selecting a group of important items from the whole variable candidate set. In order to verify the usefulness of the parameter identification process, we provide a virtual bench test example for the numerical analysis and user-friendly instructions for potential applications.
RESUMEN
This paper suggests a new control design based on the concept of Synergetic Control theory for controlling a one-link robot arm actuated by Pneumatic artificial muscles (PAMs) in opposing bicep/tricep positions. The synergetic control design is first established based on known system parameters. However, in real PAM-actuated systems, the uncertainties are inherited features in their parameters and hence an adaptive synergetic control algorithm is proposed and synthesized for a PAM-actuated robot arm subjected to perturbation in its parameters. The adaptive synergetic laws are developed to estimate the uncertainties and to guarantee the asymptotic stability of the adaptive synergetic controlled PAM-actuated system. The work has also presented an improvement in the performance of proposed synergetic controllers (classical and adaptive) by applying a modern optimization technique based on Particle Swarm Optimization (PSO) to tune their design parameters towards optimal dynamic performance. The effectiveness of the proposed classical and adaptive synergetic controllers has been verified via computer simulation and it has been shown that the adaptive controller could cope with uncertainties and keep the controlled system stable. The proposed optimal Adaptive Synergetic Controller (ASC) has been validated with a previous adaptive controller with the same robot structure and actuation, and it has been shown that the optimal ASC outperforms its opponent in terms of tracking speed and error.
RESUMEN
For nonlinear systems subjected to external disturbances, an adaptive terminal sliding mode control (TSM) approach with fixed-time convergence is presented in this paper. The introduction of the fixed-time TSM with the sliding surface and the new Lemma of fixed-time stability are the main topics of discussion. The suggested approach demonstrates quick convergence, smooth and non-singular control input, and stability within a fixed time. Existing fixed-time TSM schemes are often impacted by unknown dynamics such as uncertainty and disturbances. Therefore, the proposed strategy is developed by combining the fixed-time TSM with an adaptive scheme. This adaptive method deals with an uncertain dynamic system when there are external disturbances. The stability of a closed-loop structure in a fixed-time will be shown by the findings of the Lyapunov analysis. Finally, the outcomes of the simulations are shown to evaluate and demonstrate the efficacy of the suggested method. As a result, examples with different cases are provided for a better comparison of suggested and existing control strategies.
Asunto(s)
Algoritmos , Dinámicas no Lineales , Incertidumbre , Simulación por Computador , Modelos TeóricosRESUMEN
The performance of the robotic manipulator is negatively impacted by outside disturbances and uncertain parameters. The system's variables are also highly coupled, complex, and nonlinear, indicating that it is a multi-input, multi-output system. Therefore, it is necessary to develop a controller that can control the variables in the system in order to handle these complications. This work proposes six control structures based on neural networks (NNs) with proportional integral derivative (PID) and fractional-order PID (FOPID) controllers to operate a 2-link rigid robot manipulator (2-LRRM) for trajectory tracking. These are named as set-point-weighted PID (W-PID), set-point weighted FOPID (W-FOPID), recurrent neural network (RNN)-like PID (RNNPID), RNN-like FOPID (RNN-FOPID), NN+PID, and NN+FOPID controllers. The zebra optimization algorithm (ZOA) was used to adjust the parameters of the proposed controllers while reducing the integral-time-square error (ITSE). A new objective function was proposed for tuning to generate controllers with minimal chattering in the control signal. After implementing the proposed controller designs, a comparative robustness study was conducted among these controllers by altering the initial conditions, disturbances, and model uncertainties. The simulation results demonstrate that the NN+FOPID controller has the best trajectory tracking performance with the minimum ITSE and best robustness against changes in the initial states, external disturbances, and parameter uncertainties compared to the other controllers.
RESUMEN
Robotic manipulators are nonlinear systems, multi-input multi-output, highly coupled and complicated whose performance is negatively impacted by external disturbances and parameter un-certainties. Therefore, the controllers designed for such systems must be capable of managing their complexity. The main aim of this study is to tackle the trajectory tracking issue of the three-Link Rigid Robot Manipulator (3-LRRM) based on designing three control structures using a combi-nation Neural Network (NN) with Proportional, Integral and Derivative (PID) actions named Neural Controller Like PIPD (NN-PIPD) controller, Neural Network plus PID (NN + PID) controller NN + PID controller and Elman Neural Network Like PID (ELNN-PID) controller. The parameters of the proposed controllers are adjusted utilizing the Coot Optimization Algorithm (COOA) in order to reduce the Integral Time Square Error (ITSE). A novel objective function for tuning process to produce a controller with minimum value of the chattering in the control signal is proposed. The performance of the proposed controllers is evaluated in terms of disturbance rejection, model uncertainty, fluctuating initial conditions and reference trajectory tracking. According to the simulation results proved that the suggested NN-PIPD controller outperforms all other proposed controller structures for tracking performance, stability, and robustness. As a result of the com-parison analysis the optimal controller was considered to be an NN-PIPD controller for tracking trajectory, rejecting disturbances, and parameter variation with minimizing ITSE of 0.001777.
RESUMEN
Modern natural language processing (NLP) state-of-the-art (SoTA) deep learning (DL) models have hundreds of millions of parameters, making them extremely complex. Large datasets are required for training these models, and while pretraining has reduced this requirement, human-labelled datasets are still necessary for fine-tuning. Few-shot learning (FSL) techniques, such as meta-learning, try to train models from smaller datasets to mitigate this cost. However, the tasks used to evaluate these meta-learners frequently diverge from the problems in the real world that they are meant to resolve. This work aims to apply meta-learning to a problem that is more pertinent to the real world: class incremental learning (IL). In this scenario, after completing its training, the model learns to classify newly introduced classes. One unique quality of meta-learners is that they can generalise from a small sample size to classes that have never been seen before, which makes them especially useful for class incremental learning (IL). The method describes how to emulate class IL using proxy new classes. This method allows a meta-learner to complete the task without the need for retraining. To generate predictions, the transformer-based aggregation function in a meta-learner that modifies data from examples across all classes has been proposed. The principal contributions of the model include concurrently considering the entire support and query sets, and prioritising attention to crucial samples, such as the question, to increase the significance of its impact during inference. The outcomes demonstrate that the model surpasses prevailing benchmarks in the industry. Notably, most meta-learners demonstrate significant generalisation in the context of class IL even without specific training for this task. This paper establishes a high-performing baseline for subsequent transformer-based aggregation techniques, thereby emphasising the practical significance of meta-learners in class IL.