Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Pharm ; 16(9): 3791-3801, 2019 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-31329461

RESUMEN

Lafora disease (LD) is a fatal juvenile epilepsy characterized by the accumulation of aberrant glucan aggregates called Lafora bodies (LBs). Delivery of protein-based therapeutics to the central nervous system (CNS) for the clearance of LBs remains a unique challenge in the field. Recently, a humanized antigen-binding fragment (hFab) derived from a murine systemic lupus erythematosus DNA autoantibody (3E10) has been shown to mediate cell penetration and proposed as a broadly applicable carrier to mediate cellular targeting and uptake. We report studies on the efficacy and CNS delivery of VAL-0417, an antibody-enzyme fusion composed of the 3E10 hFab and human pancreatic α-amylase, in a mouse model of LD. An enzyme-linked immunosorbent assay has been developed to detect VAL-0417 post-treatment as a measure of delivery efficacy. We demonstrate the robust and sensitive detection of the fusion protein in multiple tissue types. Using this method, we measured biodistribution in different methods of delivery. We found that intracerebroventricular administration provided robust CNS delivery when compared to intrathecal administration. These data define critical steps in the translational pipeline of VAL-0417 for the treatment of LD.


Asunto(s)
Encéfalo/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Fragmentos Fab de Inmunoglobulinas/genética , Fragmentos Fab de Inmunoglobulinas/metabolismo , Enfermedad de Lafora/tratamiento farmacológico , alfa-Amilasas Pancreáticas/genética , alfa-Amilasas Pancreáticas/farmacocinética , Animales , Fusión Artificial Génica/métodos , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Portadores de Fármacos/metabolismo , Ensayo de Inmunoadsorción Enzimática , Glucanos/metabolismo , Células HEK293 , Humanos , Ratones , Ratones Noqueados , Plásmidos/genética , Proteínas Tirosina Fosfatasas no Receptoras/genética , Distribución Tisular , Resultado del Tratamiento
2.
J Neurosci ; 36(10): 2926-44, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961948

RESUMEN

Studies in humans with Down syndrome (DS) show that alterations in fetal brain development are followed by postnatal deficits in neuronal numbers, synaptic plasticity, and cognitive and motor function. This same progression is replicated in several mouse models of DS. Dp(16)1Yey/+ (hereafter called Dp16) is a recently developed mouse model of DS in which the entire region of mouse chromosome 16 that is homologous to human chromosome 21 has been triplicated. As such, Dp16 mice may more closely reproduce neurodevelopmental changes occurring in humans with DS. Here, we present the first comprehensive cellular and behavioral study of the Dp16 forebrain from embryonic to adult stages. Unexpectedly, our results demonstrate that Dp16 mice do not have prenatal brain defects previously reported in human fetal neocortex and in the developing forebrains of other mouse models, including microcephaly, reduced neurogenesis, and abnormal cell proliferation. Nevertheless, we found impairments in postnatal developmental milestones, fewer inhibitory forebrain neurons, and deficits in motor and cognitive performance in Dp16 mice. Therefore, although this new model does not express prenatal morphological phenotypes associated with DS, abnormalities in the postnatal period appear sufficient to produce significant cognitive deficits in Dp16.


Asunto(s)
Encéfalo/anomalías , Encéfalo/patología , Anomalías Craneofaciales/etiología , Modelos Animales de Enfermedad , Síndrome de Down/complicaciones , Síndrome de Down/genética , Trisomía/fisiopatología , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Cromosomas Humanos Par 16/genética , Discapacidades del Desarrollo/etiología , Embrión de Mamíferos , Conducta Exploratoria/fisiología , Femenino , Genotipo , Humanos , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Fuerza Muscular/genética , Nestina/genética , Nestina/metabolismo , Neurogénesis/genética , Memoria Espacial/fisiología , Trisomía/genética
3.
Dis Model Mech ; 13(9)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32817053

RESUMEN

Mouse models of Down syndrome (DS) have been invaluable tools for advancing knowledge of the underlying mechanisms of intellectual disability in people with DS. The Ts(1716)65Dn (Ts65Dn) mouse is one of the most commonly used models as it recapitulates many of the phenotypes seen in individuals with DS, including neuroanatomical changes and impaired learning and memory. In this study, we use rigorous metrics to evaluate multiple cohorts of Ts65Dn ranging from 2014 to the present, including a stock of animals recovered from embryos frozen within ten generations after the colony was first created in 2010. Through quantification of prenatal and postnatal brain development and several behavioral tasks, our results provide a comprehensive comparison of Ts65Dn across time and show a significant amount of variability both across cohorts as well as within cohorts. The inconsistent phenotypes in Ts65Dn mice highlight specific cautions and caveats for use of this model. We outline important steps for ensuring responsible use of Ts65Dn in future research.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Conducta Animal , Encéfalo/patología , Síndrome de Down/patología , Animales , Encéfalo/embriología , Recuento de Células , Cerebelo/embriología , Cerebelo/patología , Modelos Animales de Enfermedad , Embrión de Mamíferos/patología , Desarrollo Embrionario , Femenino , Miembro Posterior/fisiopatología , Hipocampo/embriología , Hipocampo/patología , Longevidad , Masculino , Ratones Transgénicos , Prueba del Laberinto Acuático de Morris , Vaina de Mielina/metabolismo , Oligodendroglía/metabolismo , Tamaño de los Órganos , Fenotipo , Reflejo
4.
J Neurodev Disord ; 11(1): 35, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31839007

RESUMEN

BACKGROUND: Down syndrome (DS), caused by the triplication of chromosome 21, results in a constellation of clinical features including changes in intellectual and motor function. Although altered neural development and function have been well described in people with DS, few studies have investigated the etiology underlying the observed motor phenotypes. Here, we examine the development, patterning, and organization of the spinal cord throughout life in the Ts65Dn mouse, a model that recapitulates many of the motor changes observed in people with DS. METHODS: Spinal cords from embryonic to adult animals were processed for gene and protein expression (immunofluorescence) to track the spatiotemporal development of excitatory and inhibitory neurons and oligodendroglia. Postnatal analyses were focused on the lumbar region due to the reflex and gait abnormalities found in Ts65Dn mice and locomotive alterations seen in people with DS. RESULTS: Between embryonic days E10.5 and E14.5, we found a larger motor neuron progenitor domain in Ts65Dn animals containing more OLIG2-expressing progenitor cells. These disturbed progenitors are delayed in motor neuron production but eventually generate a large number of ISL1+ migrating motor neurons. We found that higher numbers of PAX6+ and NKX2.2+ interneurons (INs) are also produced during this time frame. In the adult lumbar spinal cord, we found an increased level of Hb9 and a decreased level of Irx3 gene expression in trisomic animals. This was accompanied by an increase in Calretinin+ INs, but no changes in other neuronal populations. In aged Ts65Dn animals, both Calbindin+ and ChAT+ neurons were decreased compared to euploid controls. Additionally, in the dorsal corticospinal white matter tract, there were significantly fewer CC1+ mature OLs in 30- and 60-day old trisomic animals and this normalized to euploid levels at 10-11 months. In contrast, the mature OL population was increased in the lateral funiculus, an ascending white matter tract carrying sensory information. In 30-day old animals, we also found a decrease in the number of nodes of Ranvier in both tracts. This decrease normalized both in 60-day old and aged animals. CONCLUSIONS: We show marked changes in both spinal white matter and neuronal composition that change regionally over the life span. In the embryonic Ts65Dn spinal cord, we observe alterations in motor neuron production and migration. In the adult spinal cord, we observe changes in oligodendrocyte maturation and motor neuron loss, the latter of which has also been observed in human spinal cord tissue samples. This work uncovers multiple cellular perturbations during Ts65Dn development and aging, many of which may underlie the motor deficits found in DS.


Asunto(s)
Síndrome de Down/fisiopatología , Neuroglía/fisiología , Neuronas/fisiología , Médula Espinal/crecimiento & desarrollo , Animales , Modelos Animales de Enfermedad , Femenino , Regulación del Desarrollo de la Expresión Génica , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodominio , Masculino , Ratones Transgénicos , Proteínas Nucleares , Factores de Transcripción , Sustancia Blanca/crecimiento & desarrollo
5.
Cell Metab ; 30(4): 689-705.e6, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31353261

RESUMEN

Lafora disease (LD) is a fatal childhood epilepsy caused by recessive mutations in either the EPM2A or EPM2B gene. A hallmark of LD is the intracellular accumulation of insoluble polysaccharide deposits known as Lafora bodies (LBs) in the brain and other tissues. In LD mouse models, genetic reduction of glycogen synthesis eliminates LB formation and rescues the neurological phenotype. Therefore, LBs have become a therapeutic target for ameliorating LD. Herein, we demonstrate that human pancreatic α-amylase degrades LBs. We fused this amylase to a cell-penetrating antibody fragment, and this antibody-enzyme fusion (VAL-0417) degrades LBs in vitro and dramatically reduces LB loads in vivo in Epm2a-/- mice. Using metabolomics and multivariate analysis, we demonstrate that VAL-0417 treatment of Epm2a-/- mice reverses the metabolic phenotype to a wild-type profile. VAL-0417 is a promising drug for the treatment of LD and a putative precision therapy platform for intractable epilepsy.


Asunto(s)
Encéfalo/efectos de los fármacos , Descubrimiento de Drogas , Cuerpos de Inclusión/efectos de los fármacos , Enfermedad de Lafora/terapia , alfa-Amilasas Pancreáticas/farmacología , Proteínas Recombinantes de Fusión/farmacología , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , Células HEK293 , Humanos , Inmunoglobulina G/uso terapéutico , Ratones , Ratones Endogámicos C57BL , alfa-Amilasas Pancreáticas/uso terapéutico , Ratas , Proteínas Recombinantes de Fusión/uso terapéutico
6.
Dis Model Mech ; 11(6)2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29716957

RESUMEN

Down syndrome (DS) results from triplication of human chromosome 21. Neuropathological hallmarks of DS include atypical central nervous system development that manifests prenatally and extends throughout life. As a result, individuals with DS exhibit cognitive and motor deficits, and have delays in achieving developmental milestones. To determine whether different mouse models of DS recapitulate the human prenatal and postnatal phenotypes, here, we directly compared brain histogenesis, gene expression and behavior over the lifespan of three cytogenetically distinct mouse models of DS: Ts1Cje, Ts65Dn and Dp(16)1/Yey. Histological data indicated that Ts65Dn mice were the most consistently affected with respect to somatic growth, neurogenesis and brain morphogenesis. Embryonic and adult gene expression results showed that Ts1Cje and Ts65Dn brains had considerably more differentially expressed (DEX) genes compared with Dp(16)1/Yey mice, despite the larger number of triplicated genes in the latter model. In addition, DEX genes showed little overlap in identity and chromosomal distribution in the three models, leading to dissimilarities in affected functional pathways. Perinatal and adult behavioral testing also highlighted differences among the models in their abilities to achieve various developmental milestones and perform hippocampal- and motor-based tasks. Interestingly, Dp(16)1/Yey mice showed no abnormalities in prenatal brain phenotypes, yet they manifested behavioral deficits starting at postnatal day 15 that continued through adulthood. In contrast, Ts1Cje mice showed mildly abnormal embryonic brain phenotypes, but only select behavioral deficits as neonates and adults. Altogether, our data showed widespread and unexpected fundamental differences in behavioral, gene expression and brain development phenotypes between these three mouse models. Our findings illustrate unique limitations of each model when studying aspects of brain development and function in DS. This work helps to inform model selection in future studies investigating how observed neurodevelopmental abnormalities arise, how they contribute to cognitive impairment, and when testing therapeutic molecules to ameliorate the intellectual disability associated with DS.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Conducta Animal , Encéfalo/crecimiento & desarrollo , Síndrome de Down/genética , Regulación de la Expresión Génica , Longevidad/genética , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/patología , Encéfalo/fisiopatología , Modelos Animales de Enfermedad , Síndrome de Down/patología , Síndrome de Down/fisiopatología , Femenino , Genoma , Hipocampo/patología , Masculino , Ratones Endogámicos C57BL , Actividad Motora , Neurogénesis/genética , Neuronas/patología , Fenotipo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda