Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Euro Surveill ; 24(43)2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31662158

RESUMEN

During summer 2019, three patients residing by Tisvilde Hegn, Denmark were hospitalised with tick-borne encephalitis (TBE) after tick bites. A new TBE virus (TBEV) micro-focus was identified in tick nymphs collected around a playground in Tisvilde Hegn forest. Estimated TBEV prevalence was 8%, higher than in endemic areas around Europe. Whole genome sequencing showed clustering to a TBEV strain from Norway. This is the second time TBEV is found in Ixodes ricinus outside Bornholm, Denmark.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas/aislamiento & purificación , Encefalitis Transmitida por Garrapatas/diagnóstico , Ixodes/virología , ARN Viral/genética , Adulto , Anciano , Animales , Virus de la Encefalitis Transmitidos por Garrapatas/genética , Femenino , Fiebre/etiología , Cefalea/etiología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina M/sangre , Masculino , Persona de Mediana Edad , ARN Viral/aislamiento & purificación , Secuenciación Completa del Genoma
2.
Euro Surveill ; 24(9)2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30862329

RESUMEN

BackgroundTick-borne diseases have become increasingly common in recent decades and present a health problem in many parts of Europe. Control and prevention of these diseases require a better understanding of vector distribution.AimOur aim was to create a model able to predict the distribution of Ixodes ricinus nymphs in southern Scandinavia and to assess how this relates to risk of human exposure.MethodsWe measured the presence of I. ricinus tick nymphs at 159 stratified random lowland forest and meadow sites in Denmark, Norway and Sweden by dragging 400 m transects from August to September 2016, representing a total distance of 63.6 km. Using climate and remote sensing environmental data and boosted regression tree modelling, we predicted the overall spatial distribution of I. ricinus nymphs in Scandinavia. To assess the potential public health impact, we combined the predicted tick distribution with human density maps to determine the proportion of people at risk.ResultsOur model predicted the spatial distribution of I. ricinus nymphs with a sensitivity of 91% and a specificity of 60%. Temperature was one of the main drivers in the model followed by vegetation cover. Nymphs were restricted to only 17.5% of the modelled area but, respectively, 73.5%, 67.1% and 78.8% of the human populations lived within 5 km of these areas in Denmark, Norway and Sweden.ConclusionThe model suggests that increasing temperatures in the future may expand tick distribution geographically in northern Europe, but this may only affect a small additional proportion of the human population.


Asunto(s)
Clima , Encefalitis Transmitida por Garrapatas/epidemiología , Ixodes/crecimiento & desarrollo , Enfermedad de Lyme/epidemiología , Filogeografía , Infestaciones por Garrapatas/epidemiología , Animales , Dinamarca/epidemiología , Ambiente , Exposición a Riesgos Ambientales , Geografía , Humanos , Ixodes/fisiología , Modelos Biológicos , Noruega/epidemiología , Ninfa , Dinámica Poblacional , Tecnología de Sensores Remotos , Países Escandinavos y Nórdicos , Estaciones del Año , Suecia/epidemiología
3.
Emerg Infect Dis ; 23(12): 2072-2074, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29148376

RESUMEN

From a migrating golden jackal (Canis aureus), we retrieved 21 live male Dermacentor reticulatus ticks, a species not previously reported from wildlife in Denmark. We identified Rickettsia raoultii from 18 (86%) of the ticks. This bacterium is associated with scalp eschar and neck lymphadenopathy after tick bite syndrome among humans.


Asunto(s)
Vectores Arácnidos/microbiología , Dermacentor/microbiología , Genes Bacterianos , Chacales/microbiología , Rickettsia/genética , Migración Animal , Animales , Dinamarca , Masculino , Rickettsia/aislamiento & purificación , Infecciones por Rickettsia/microbiología , Rickettsiosis Exantemáticas/microbiología
4.
Exp Appl Acarol ; 71(2): 171-182, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28255923

RESUMEN

Ixodes ricinus serves as vector for a range of microorganisms capable of causing clinical illness in humans. The microorganisms occur in the same vector populations and are generally affected by the same tick-host interactions. Still, the instars have different host preferences which should manifest in different transmission patterns for various microorganisms in the tick populations, i.e., most microorganisms increase in prevalence rate from larvae to nymphs because their reservoirs are among small mammals and birds that serve as blood hosts for larvae. Other microorganisms, like Anaplasma phagocytophilum, mainly increase in prevalence rates from nymphs to adults, because their reservoirs are larger ungulates that serve as primary blood hosts for nymphs and adults. We sampled a representative sample of ticks from 12 locations on Zealand and Funen, Denmark, and investigated the differences in prevalence rate of infection in larvae, nymphs and adults for multiple pathogens. Prevalence of infection for larvae, nymphs and adults, respectively, was: 0, 1.5 and 4.5% for Borrelia burgdorferi; 0, 4.2 and 3.9% for Borrelia garinii; 0, 6.6 and 6.1% for Borrelia afzelii; 0, 0 and 0.6% for Borrelia valaisiana; 0, 3.7 and 0.6% for Borrelia spielmanii; 0, 0.7 and 1.2% for Babesia divergens; 0, 0, 0.6% for Babesia venatorum; 0, 1.5 and 6.1% for A. phagocytophilum. The results were in general compatible with the hypothesis i.e., that differences in blood host for larvae and nymphs define differences in transmission of infectious agents, but other factors than differences in blood hosts between larvae and nymphs may also be important to consider.


Asunto(s)
Ixodes/microbiología , Ixodes/parasitología , Enfermedades por Picaduras de Garrapatas/transmisión , Enfermedades de los Animales/epidemiología , Enfermedades de los Animales/transmisión , Animales , Dinamarca/epidemiología , Humanos , Ixodes/crecimiento & desarrollo , Ixodes/fisiología , Larva/microbiología , Larva/parasitología , Larva/fisiología , Ninfa/microbiología , Ninfa/parasitología , Ninfa/fisiología , Prevalencia , Enfermedades por Picaduras de Garrapatas/epidemiología
5.
Sci Rep ; 13(1): 7685, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37169798

RESUMEN

Incidence of tick-borne encephalitis (TBE) has increased during the last years in Scandinavia, but the underlying mechanism is not understood. TBE human case data reported between 2010 and 2021 were aggregated into postal codes within Örebro County, south-central Sweden, along with tick abundance and environmental data to analyse spatial patterns and identify drivers of TBE. We identified a substantial and continuing increase of TBE incidence in Örebro County during the study period. Spatial cluster analyses showed significant hotspots (higher number of cases than expected) in the southern and northern parts of Örebro County, whereas a cold spot (lower number of cases than expected) was found in the central part comprising Örebro municipality. Generalised linear models showed that the risk of acquiring TBE increased by 12.5% and 72.3% for every percent increase in relative humidity and proportion of wetland forest, respectively, whereas the risk decreased by 52.8% for every degree Celsius increase in annual temperature range. However, models had relatively low goodness of fit (R2 < 0.27). Results suggest that TBE in Örebro County is spatially clustered, however variables used in this study, i.e., climatic variables, forest cover, water, tick abundance, sheep as indicator species, alone do not explain this pattern.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Garrapatas , Humanos , Animales , Ovinos , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/veterinaria , Suecia/epidemiología , Países Escandinavos y Nórdicos , Incidencia
6.
Viruses ; 15(6)2023 05 26.
Artículo en Inglés | MEDLINE | ID: mdl-37376554

RESUMEN

A seasonal trend of African swine fever (ASF) outbreaks in domestic pig farms has been observed in affected regions of Eastern Europe. Most outbreaks have been observed during the warmer summer months, coinciding with the seasonal activity pattern of blood-feeding insects. These insects may offer a route for introduction of the ASF virus (ASFV) into domestic pig herds. In this study, insects (hematophagous flies) collected outside the buildings of a domestic pig farm, without ASFV-infected pigs, were analyzed for the presence of the virus. Using qPCR, ASFV DNA was detected in six insect pools; in four of these pools, DNA from suid blood was also identified. This detection coincided with ASFV being reported in the wild boar population within a 10 km radius of the pig farm. These findings show that blood from ASFV-infected suids was present within hematophagous flies on the premises of a pig farm without infected animals and support the hypothesis that blood-feeding insects can potentially transport the virus from wild boars into domestic pig farms.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Porcinos , Animales , Virus de la Fiebre Porcina Africana/genética , Granjas , Lituania , Bioaseguramiento , Sus scrofa , Brotes de Enfermedades/veterinaria , Insectos
7.
Parasit Vectors ; 16(1): 384, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37880680

RESUMEN

BACKGROUND: The ticks Ixodes ricinus and Dermacentor reticulatus are two of the most important vectors in Europe. Climate niche modelling has been used in many studies to attempt to explain their distribution and to predict changes under a range of climate change scenarios. The aim of this study was to assess the ability of different climate niche modelling approaches to explain the known distribution of I. ricinus and D. reticulatus in Europe. METHODS: A series of climate niche models, using different combinations of input data, were constructed and assessed. Species occurrence records obtained from systematic literature searches and Global Biodiversity Information Facility data were thinned to different degrees to remove sampling spatial bias. Four sources of climate data were used: bioclimatic variables, WorldClim, TerraClimate and MODIS satellite-derived data. Eight different model training extents were examined and three modelling frameworks were used: maximum entropy, generalised additive models and random forest models. The results were validated through internal cross-validation, comparison with an external independent dataset and expert opinion. RESULTS: The performance metrics and predictive ability of the different modelling approaches varied significantly within and between each species. Different combinations were better able to define the distribution of each of the two species. However, no single approach was considered fully able to capture the known distribution of the species. When considering the mean of the performance metrics of internal and external validation, 24 models for I. ricinus and 11 models for D. reticulatus of the 96 constructed were considered adequate according to the following criteria: area under the receiver-operating characteristic curve > 0.7; true skill statistic > 0.4; Miller's calibration slope 0.25 above or below 1; Boyce index > 0.9; omission rate < 0.15. CONCLUSIONS: This comprehensive analysis suggests that there is no single 'best practice' climate modelling approach to account for the distribution of these tick species. This has important implications for attempts to predict climate-mediated impacts on future tick distribution. It is suggested here that climate variables alone are not sufficient; habitat type, host availability and anthropogenic impacts, not included in current modelling approaches, could contribute to determining tick presence or absence at the local or regional scale.


Asunto(s)
Dermacentor , Ixodes , Animales , Biodiversidad , Ecosistema , Europa (Continente)
8.
Zoonoses Public Health ; 70(6): 473-484, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37248739

RESUMEN

Ixodes ricinus ticks are Scandinavia's main vector for tick-borne encephalitis virus (TBEV), which infects many people annually. The aims of the present study were (i) to obtain information on the TBEV prevalence in host-seeking I. ricinus collected within the Øresund-Kattegat-Skagerrak (ØKS) region, which lies in southern Norway, southern Sweden and Denmark; (ii) to analyse whether there are potential spatial patterns in the TBEV prevalence; and (iii) to understand the relationship between TBEV prevalence and meteorological factors in southern Scandinavia. Tick nymphs were collected in 2016, in southern Scandinavia, and screened for TBEV, using pools of 10 nymphs, with RT real-time PCR, and positive samples were confirmed with pyrosequencing. Spatial autocorrelation and cluster analysis was performed with Global Moran's I and SatScan to test for spatial patterns and potential local clusters of the TBEV pool prevalence at each of the 50 sites. A climatic analysis was made to correlate parameters such as minimum, mean and maximum temperature, relative humidity and saturation deficit with TBEV pool prevalence. The climatic data were acquired from the nearest meteorological stations for 2015 and 2016. This study confirms the presence of TBEV in 12 out of 30 locations in Denmark, where six were from Jutland, three from Zealand and two from Bornholm and Falster counties. In total, five out of nine sites were positive from southern Sweden. TBEV prevalence of 0.7%, 0.5% and 0.5%, in nymphs, was found at three sites along the Oslofjord (two sites) and northern Skåne region (one site), indicating a potential concern for public health. We report an overall estimated TBEV prevalence of 0.1% in questing I. ricinus nymphs in southern Scandinavia with a region-specific prevalence of 0.1% in Denmark, 0.2% in southern Sweden and 0.1% in southeastern Norway. No evidence of a spatial pattern or local clusters was found in the study region. We found a strong correlation between TBEV prevalence in ticks and relative humidity in Sweden and Norway, which might suggest that humidity has a role in maintaining TBEV prevalence in ticks. TBEV is an emerging tick-borne pathogen in southern Scandinavia, and we recommend further studies to understand the TBEV transmission potential with changing climate in Scandinavia.


Asunto(s)
Virus de la Encefalitis Transmitidos por Garrapatas , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Prevalencia , Estaciones del Año , Encefalitis Transmitida por Garrapatas/epidemiología , Encefalitis Transmitida por Garrapatas/veterinaria , Países Escandinavos y Nórdicos/epidemiología , Conceptos Meteorológicos , Ninfa
9.
Viruses ; 15(3)2023 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-36992499

RESUMEN

Tick-borne encephalitis (TBE) is a viral disease endemic in Eurasia. The virus is mainly transmitted to humans via ticks and occasionally via the consumption of unpasteurized milk products. The European Centre for Disease Prevention and Control reported an increase in TBE incidence over the past years in Europe as well as the emergence of the disease in new areas. To better understand this phenomenon, we investigated the drivers of TBE emergence and increase in incidence in humans through an expert knowledge elicitation. We listed 59 possible drivers grouped in eight domains and elicited forty European experts to: (i) allocate a score per driver, (ii) weight this score within each domain, and (iii) weight the different domains and attribute an uncertainty level per domain. An overall weighted score per driver was calculated, and drivers with comparable scores were grouped into three terminal nodes using a regression tree analysis. The drivers with the highest scores were: (i) changes in human behavior/activities; (ii) changes in eating habits or consumer demand; (iii) changes in the landscape; (iv) influence of humidity on the survival and transmission of the pathogen; (v) difficulty to control reservoir(s) and/or vector(s); (vi) influence of temperature on virus survival and transmission; (vii) number of wildlife compartments/groups acting as reservoirs or amplifying hosts; (viii) increase of autochthonous wild mammals; and (ix) number of tick species vectors and their distribution. Our results support researchers in prioritizing studies targeting the most relevant drivers of emergence and increasing TBE incidence.


Asunto(s)
Dermacentor , Encefalitis Transmitida por Garrapatas , Ixodes , Animales , Humanos , Europa (Continente)/epidemiología , Animales Salvajes , Mamíferos
10.
Front Vet Sci ; 9: 1046263, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36686172

RESUMEN

Introduction: Mosquitoes either biologically or mechanically transmit various vector-borne pathogens affecting pigs. Mosquito species display a wide variety of host preference, as well as host attraction and behaviours. Mosquito species attraction rates to- and feeding rates on pigs or other potential hosts, as well as the seasonal abundance of the mosquito species affects their pathogen transmission potential. Methods: We caught mosquitoes in experimental cages containing pigs situated in Romanian backyard farms. The host species of blood meals were identified with PCR and sequencing. Results: High feeding preferences for pigs were observed in Aedes vexans (90%), Anopheles maculipennis (80%) and Culiseta annulata (72.7%). However, due to a high abundance in the traps, Culex pipiens/torrentium were responsible for 37.9% of all mosquito bites on pigs in the Romanian backyards, despite low feeding rates on pigs in the cages (18.6%). We also found that other predominantly ornithophilic mosquito species, as well as mosquitoes that are already carrying a blood meal from a different (mammalian) host, were attracted to backyard pigs or their enclosure. Discussion: These results indicate that viraemic blood carrying, for instance, African swine fever virus, West-Nile virus or Japanese encephalitis virus could be introduced to these backyard pig farms and therefore cause an infection, either through subsequent feeding, via ingestion by the pig or by environmental contamination.

11.
Int J Parasitol Parasites Wildl ; 16: 175-182, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34660192

RESUMEN

Raccoon dogs have successfully invaded Europe, including Denmark. Raccoon dogs are potential vectors and reservoir hosts of several zoonotic pathogens and thus have the potential for posing a threat to both human and animal health. This study includes analysis of four zoonotic parasites, 16 tick-borne pathogens and two pathogen groups from 292 raccoon dogs collected from January 2018 to December 2018. The raccoon dogs were received as a part of the Danish national wildlife surveillance program and were hunted, found dead or road killed. The raccoon dogs were screened for Alaria alata and Echinococcus multilocularis eggs in faeces by microscopy and PCR, respectively, Trichinella spp. larvae in muscles by digestion, antibodies against Toxoplasma gondii by ELISA and screening of ticks for pathogens by fluidigm real-time PCR. All raccoon dogs tested negative for E. multilocularis and Trichinella spp., while 32.9% excreted A. alata eggs and 42.7% were T. gondii sero-positive. Five tick-borne pathogens were identified in ticks collected from 15 raccoon dogs, namely Anaplasma phagocytophilum (20.0%), Babesia venatorum (6.7%), Borrelia miyamotoi (6.7%), Neoehrlichia mikurensis (6.7%) and Rickettsia helvetica (60.0%). We identified raccoon dogs from Denmark as an important reservoir of T. gondii and A. alata infection to other hosts, including humans, while raccoon dogs appear as a negligible reservoir of E. multilocularis and Trichinella spp. infections. Our results suggest that raccoon dogs may be a reservoir of A. phagocytophilum.

12.
Sci Rep ; 11(1): 3527, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574465

RESUMEN

We caught stable- and house flies on a Danish LA-MRSA positive pig farm. Stable- and house flies were housed together and culled over time to test for the presence of live LA-MRSA bacteria at 24 h intervals to establish the length of time for which LA-MRSA can persist on flies. On average, 7% of stable flies and 27% of house flies tested positive for LA-MRSA immediately upon removal from the farm. LA-MRSA prevalence decreased over time and estimates based on a Kaplan-Meier time-to-event analysis indicated that the probability of a stable- or house fly testing positive for LA-MRSA was 5.4% and 7.8% after 24 h, 3.5% and 4.3% after 48 h, 3.1% and 2.2% after 72 h and 0.4% and 0% after 96 h of removal from the pig farm, respectively. Simultaneously, we found that caged cultivated house flies became carriers of LA-MRSA, without direct contact with pigs, in the same proportions as wild flies inside the farm. We provide distance distributions of Danish pig farms and residential addresses as well as the calculated maximum dispersal potentials of stable- and house flies, which suggest that there is a potential for stable- and house flies dispersing live LA-MRSA bacteria into the surrounding environment of a pig farm. This potential should therefore be considered when modelling the spread between farms or the risk posed to humans living in close proximity to LA-MRSA pig farm sources.


Asunto(s)
Moscas Domésticas/microbiología , Staphylococcus aureus Resistente a Meticilina/aislamiento & purificación , Muscidae/microbiología , Infecciones Estafilocócicas/microbiología , Animales , Dinamarca , Granjas , Moscas Domésticas/patogenicidad , Ganado/microbiología , Staphylococcus aureus Resistente a Meticilina/patogenicidad , Muscidae/patogenicidad , Infecciones Estafilocócicas/transmisión , Infecciones Estafilocócicas/veterinaria , Porcinos/microbiología
13.
Sci Rep ; 10(1): 7796, 2020 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-32385297

RESUMEN

In Europe, Lyme neuroborreliosis (LNB) is the most severe manifestation of Lyme borreliosis and has recently been added to the communicable disease surveillance list for EU/EEA by the European Commission. In Northern Europe, LNB is primarily caused by the spirochete Borrelia garinii and transmitted by the tick Ixodes ricinus. This Danish observational epidemiologic case-control study includes every identified LNB patient (n = 401) on Funen, Denmark, from 1995-2014. We display spatial and temporal LNB incidence variation, seasonal distribution of cases and local spatial case clustering. Seasonal patterns show LNB symptom-onset peaking in July and a significant seasonal difference in number of cases (p < 0.01). We found no significant change in seasonality patterns over time when dividing the study period into 5-year intervals. We identified a significant local geographical hot-spot of cases with a relative risk of 2.44 (p = 0.013). Analysis revealed a significantly shorter distance to nearest forest for cases compared with controls (p < 0.001). We present a novel map of the focal geographical distribution of LNB cases in a high endemic borreliosis area. Continued studies of case clustering in the epidemiology of LNB are of key importance in guiding intervention strategies.


Asunto(s)
Borrelia burgdorferi , Neuroborreliosis de Lyme/epidemiología , Neuroborreliosis de Lyme/microbiología , Análisis por Conglomerados , Dinamarca/epidemiología , Geografía Médica , Historia del Siglo XXI , Humanos , Incidencia , Neuroborreliosis de Lyme/historia , Vigilancia en Salud Pública , Estaciones del Año , Análisis Espacio-Temporal
14.
Transbound Emerg Dis ; 67(4): 1472-1484, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32150785

RESUMEN

Following its introduction into Georgia in 2007, African swine fever virus (ASFV) has become widespread on the European continent and in Asia. In many cases, the exact route of introduction into domestic pig herds cannot be determined, but most introductions are attributed to indirect virus transmission. In this review, we describe knowledge gained about different matrices that may allow introduction of the virus into pig herds. These matrices include uncooked pig meat, processed pig-derived products, feed, matrices contaminated with the virus and blood-feeding invertebrates. Knowledge gaps still exist, and both field studies and laboratory research are needed to enhance understanding of the risks for ASFV introductions, especially via virus-contaminated materials, including bedding and feed, and via blood-feeding, flying insects. Knowledge obtained from such studies can be applied to epidemiological risk assessments for the different transmission routes. Such assessments can be utilized to help predict the most effective biosecurity and control strategies.


Asunto(s)
Virus de la Fiebre Porcina Africana/fisiología , Fiebre Porcina Africana/transmisión , Enfermedades de los Porcinos/transmisión , Fiebre Porcina Africana/virología , Animales , Asia , Europa (Continente) , Riesgo , Sus scrofa , Porcinos , Enfermedades de los Porcinos/virología
15.
Sci Data ; 7(1): 238, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32678090

RESUMEN

Ticks carry pathogens that can cause disease in both animals and humans, and there is a need to monitor the distribution and abundance of ticks and the pathogens they carry to pinpoint potential high risk areas for tick-borne disease transmission. In a joint Scandinavian study, we measured Ixodes ricinus instar abundance at 159 sites in southern Scandinavia in August-September, 2016, and collected 29,440 tick nymphs at 50 of these sites. We additionally measured abundance at 30 sites in August-September, 2017. We tested the 29,440 tick nymphs in pools of 10 in a Fluidigm real-time PCR chip to screen for 17 different tick-associated pathogens, 2 pathogen groups and 3 tick species. We present data on the geolocation, habitat type and instar abundance of the surveyed sites, as well as presence/absence of each pathogen in all analysed pools from the 50 collection sites and individual prevalence for each site. These data can be used alone or in combination with other data for predictive modelling and mapping of high-risk areas.


Asunto(s)
Distribución Animal , Ixodes/microbiología , Animales , Ecosistema , Ninfa/microbiología , Países Escandinavos y Nórdicos
17.
Sci Rep ; 10(1): 19376, 2020 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-33168841

RESUMEN

Tick-borne pathogens cause diseases in animals and humans, and tick-borne disease incidence is increasing in many parts of the world. There is a need to assess the distribution of tick-borne pathogens and identify potential risk areas. We collected 29,440 tick nymphs from 50 sites in Scandinavia from August to September, 2016. We tested ticks in a real-time PCR chip, screening for 19 vector-associated pathogens. We analysed spatial patterns, mapped the prevalence of each pathogen and used machine learning algorithms and environmental variables to develop predictive prevalence models. All 50 sites had a pool prevalence of at least 33% for one or more pathogens, the most prevalent being Borrelia afzelii, B. garinii, Rickettsia helvetica, Anaplasma phagocytophilum, and Neoehrlichia mikurensis. There were large differences in pathogen prevalence between sites, but we identified only limited geographical clustering. The prevalence models performed poorly, with only models for R. helvetica and N. mikurensis having moderate predictive power (normalized RMSE from 0.74-0.75, R2 from 0.43-0.48). The poor performance of the majority of our prevalence models suggest that the used environmental and climatic variables alone do not explain pathogen prevalence patterns in Scandinavia, although previously the same variables successfully predicted spatial patterns of ticks in the same area.


Asunto(s)
Ixodes/fisiología , Modelos Biológicos , Infestaciones por Garrapatas/epidemiología , Enfermedades por Picaduras de Garrapatas/epidemiología , Animales , Humanos , Prevalencia , Países Escandinavos y Nórdicos/epidemiología
19.
Parasit Vectors ; 13(1): 194, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32295627

RESUMEN

BACKGROUND: Culicoides biting midges transmit viruses resulting in disease in ruminants and equids such as bluetongue, Schmallenberg disease and African horse sickness. In the past decades, these diseases have led to important economic losses for farmers in Europe. Vector abundance is a key factor in determining the risk of vector-borne disease spread and it is, therefore, important to predict the abundance of Culicoides species involved in the transmission of these pathogens. The objectives of this study were to model and map the monthly abundances of Culicoides in Europe. METHODS: We obtained entomological data from 904 farms in nine European countries (Spain, France, Germany, Switzerland, Austria, Poland, Denmark, Sweden and Norway) from 2007 to 2013. Using environmental and climatic predictors from satellite imagery and the machine learning technique Random Forests, we predicted the monthly average abundance at a 1 km2 resolution. We used independent test sets for validation and to assess model performance. RESULTS: The predictive power of the resulting models varied according to month and the Culicoides species/ensembles predicted. Model performance was lower for winter months. Performance was higher for the Obsoletus ensemble, followed by the Pulicaris ensemble, while the model for Culicoides imicola showed a poor performance. Distribution and abundance patterns corresponded well with the known distributions in Europe. The Random Forests model approach was able to distinguish differences in abundance between countries but was not able to predict vector abundance at individual farm level. CONCLUSIONS: The models and maps presented here represent an initial attempt to capture large scale geographical and temporal variations in Culicoides abundance. The models are a first step towards producing abundance inputs for R0 modelling of Culicoides-borne infections at a continental scale.


Asunto(s)
Ceratopogonidae , Aprendizaje Automático , Dinámica Poblacional , Animales , Ceratopogonidae/virología , Clima , Ecosistema , Europa (Continente) , Granjas , Insectos Vectores/virología , Modelos Teóricos , Estaciones del Año
20.
Parasit Vectors ; 13(1): 265, 2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32434592

RESUMEN

BACKGROUND: Culicoides obsoletus is an abundant and widely distributed Holarctic biting midge species, involved in the transmission of bluetongue virus (BTV) and Schmallenberg virus (SBV) to wild and domestic ruminants. Females of this vector species are often reported jointly with two morphologically very close species, C. scoticus and C. montanus, forming the Obsoletus/Scoticus Complex. Recently, cryptic diversity within C. obsoletus was reported in geographically distant sites. Clear delineation of species and characterization of genetic variability is mandatory to revise their taxonomic status and assess the vector role of each taxonomic entity. Our objectives were to characterize and map the cryptic diversity within the Obsoletus/Scoticus Complex. METHODS: Portion of the cox1 mitochondrial gene of 3763 individuals belonging to the Obsoletus/Scoticus Complex was sequenced. Populations from 20 countries along a Palaearctic Mediterranean transect covering Scandinavia to Canary islands (North to South) and Canary islands to Turkey (West to East) were included. Genetic diversity based on cox1 barcoding was supported by 16S rDNA mitochondrial gene sequences and a gene coding for ribosomal 28S rDNA. Species delimitation using a multi-marker methodology was used to revise the current taxonomic scheme of the Obsoletus/Scoticus Complex. RESULTS: Our analysis showed the existence of three phylogenetic clades (C. obsoletus clade O2, C. obsoletus clade dark and one not yet named and identified) within C. obsoletus. These analyses also revealed two intra-specific clades within C. scoticus and raised questions about the taxonomic status of C. montanus. CONCLUSIONS: To our knowledge, our study provides the first genetic characterization of the Obsoletus/Scoticus Complex on a large geographical scale and allows a revision of the current taxonomic classification for an important group of vector species of livestock viruses in the Palaearctic region.


Asunto(s)
Ceratopogonidae/clasificación , Variación Genética , Insectos Vectores/clasificación , Filogenia , Animales , Ceratopogonidae/virología , Ciclooxigenasa 1/genética , Código de Barras del ADN Taxonómico , Europa (Continente) , Femenino , Geografía , Insectos Vectores/virología , Ganado/virología , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda