Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Transfus Med Hemother ; 46(1): 47-54, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31244581

RESUMEN

Clinical studies using autologous CAR T cells have achieved spectacular remissions in refractory CD19+ B cell leukaemia, however some of the patient treatments with CAR T cells failed. Beside the heterogeneity of leukaemia, the distribution and senescence of the autologous cells from heavily pretreated patients might be further reasons for this. We performed six consecutive large-scale manufacturing processes for CD20 CAR T cells from healthy donor leukapheresis using the automated CliniMACS Prodigy® platform. Starting with a CD4/CD8-positive selection, a high purity of a median of 97% T cells with a median 65-fold cell expansion was achieved. Interestingly, the transduction rate was significantly higher for CD4+ compared to CD8+ T cells and reached in a median of 23%. CD20 CAR T cells showed a good specific IFN-γ secretion after cocultivation with CD20+ target cells which correlated with good cytotoxic activity. Most importantly, 3 out of 5 CAR T cell products showed an increase in telomere length during the manufacturing process, while telomere length remained consistent in one and decreased in another process. In conclusion, this shows for the first time that beside heterogeneity among healthy donors, CAR T cell products also differ regarding cell senescence, even for cells manufactured in a standardised automated process.

2.
Front Immunol ; 15: 1328368, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39386211

RESUMEN

Introduction: Point-of-care (POC) manufacturing of chimeric antigen receptor (CAR) modified T cell has expanded rapidly over the last decade. In addition to the use of CD19 CAR T cells for hematological diseases, there is a growing interest in targeting a variety of tumor-associated epitopes. Methods: Here, we report the manufacturing and characterization of autologous anti-CD20 CAR T cells from melanoma patients within phase I clinical trial (NCT03893019). Using a second-generation lentiviral vector for the production of the CD20 CAR T cells on the CliniMACS Prodigy®. Results: We demonstrated consistency in cell composition and functionality of the products manufactured at two different production sites. The T cell purity was >98.5%, a CD4/CD8 ratio between 2.5 and 5.5 and transduction rate between 34% and 61% on day 12 (harvest). Median expansion rate was 53-fold (range, 42-65-fold) with 1.7-3.8×109 CAR T cells at harvest, a sufficient number for the planned dose escalation steps (1×105/kg, 1×106/kg, 1×107/kg BW). Complementary research of some of the products pointed out that the CAR+ cells expressed mainly central memory T-cell phenotype. All tested CAR T cell products were capable to translate into T cell activation upon engagement of CAR target cells, indicated by the increase in pro-inflammatory cytokine release and by the increase in CAR T cell amplification. Notably, there were some interindividual, cell-intrinsic differences at the level of cytokine release and amplification. CAR-mediated T cell activation depended on the level of CAR cognate antigen. Discussion: In conclusion, the CliniMACS Prodigy® platform is well suited for decentralized POC manufacturing of anti-CD20 CAR T cells and may be likewise applicable for the rapid and automated manufacturing of CAR T cells directed against other targets. Clinical trial registration: https://clinicaltrials.gov/study/NCT03893019?cond=Melanoma&term=NCT03893019&rank=1, identifier NCT03893019.


Asunto(s)
Antígenos CD20 , Inmunoterapia Adoptiva , Melanoma , Receptores Quiméricos de Antígenos , Humanos , Melanoma/terapia , Melanoma/inmunología , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/inmunología , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Antígenos CD20/inmunología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Estadificación de Neoplasias , Masculino
3.
Leukemia ; 37(9): 1868-1878, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37452103

RESUMEN

Chimeric antigen receptor (CAR) T cells provide new perspectives for treatment of hematological malignancies. Manufacturing of these cellular products includes culture expansion procedures, which may affect cellular integrity and therapeutic outcome. In this study, we investigated culture-associated epigenetic changes in CAR T cells and found continuous gain of DNAm, particularly within genes that are relevant for T cell function. Hypermethylation in many genes, such as TCF7, RUNX1, and TOX, was reflected by transcriptional downregulation. 332 CG dinucleotides (CpGs) showed an almost linear gain in methylation with cell culture time, albeit neighboring CpGs were not coherently regulated on the same DNA strands. An epigenetic signature based on 14 of these culture-associated CpGs predicted cell culture time across various culture conditions. Notably, even in CAR T cell products of similar culture time higher DNAm levels at these CpGs were associated with significantly reduced long-term survival post transfusion. Our data demonstrate that cell culture expansion of CAR T cells evokes DNA hypermethylation at specific sites in the genome and the signature may also reflect loss of potential in CAR T cell products. Hence, reduced cultivation periods are beneficial to avoid dysfunctional methylation programs that seem to be associated with worse therapeutic outcome.


Asunto(s)
Metilación de ADN , Epigénesis Genética , Humanos , Linfocitos T , Técnicas de Cultivo de Célula , Inmunoterapia Adoptiva
4.
Mol Ther Methods Clin Dev ; 21: 42-53, 2021 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-33768128

RESUMEN

Recently, a rare type of relapse was reported upon treating a B cell acute lymphoblastic leukemia (B-ALL) patient with anti-CD19 chimeric antigen receptor (CAR)-T cells caused by unintentional transduction of residual malignant B cells (CAR-B cells). We show that anti-CD19 and anti-CD20 CARs are presented on the surface of lentiviral vectors (LVs), inducing specific binding to the respective antigen. Binding of anti-CD19 CAR-encoding LVs containing supernatant was reduced by CD19-specific blocking antibodies in a dose-dependent manner, and binding was absent for unspecific LV containing supernatant. This suggests that LVs bind via displayed CAR molecules to CAR antigen-expressing cells. The relevance for CAR-T cell manufacturing was evaluated when PBMCs and B-ALL malignant B cells were mixed and transduced with anti-CD19 or anti-CD20 CAR-displaying LVs in clinically relevant doses to mimic transduction conditions of unpurified patient leukapheresis samples. Malignant B cells were transduced at higher levels with LVs displaying anti-CD19 CARs compared to LVs displaying non-binding control constructs. Stability of gene transfer was confirmed by applying a potent LV inhibitor and long-term cultures for 10 days. Our findings provide a potential explanation for the emergence of CAR-B cells pointing to safer manufacturing procedures with reduced risk of this rare type of relapse in the future.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda