Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
An Acad Bras Cienc ; 94(suppl 3): e20201479, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36417600

RESUMEN

Banana 'Prata' has a significant demand in the Brazilian market, and Minas Gerais is one of the largest banana producers in the country. Scientific studies that evaluate the bananas quality produced in different cultivation regions are still incipient. Thus, this study evaluated the physical, biochemical and sensory attributes of banana 'Prata' from south and north of Minas Gerais and Vale do Ribeira (SP). Bananas from south were also cultivated in different production systems, organic and conventional. Data were submitted to multivariate analysis that provided the discrimination of the samples according to the cultivation regions. Bananas from southern presented higher levels of soluble solids and acidity, better taste, higher diameter and overall acceptance, where in the organic bananas were the most preferred by consumers. Fruit from northern stood out in appearance, texture, aroma and color, in addition to greater length. Fruit from Vale do Ribeira had higher levels of total phenolics and antioxidant activity. With these results we can assume that fruit quality is highly related to the specific climatic conditions from each producing region. Bananas from the south of Minas Gerais showed superiority for most of the evaluated traits, reflecting on consumer preference.


Asunto(s)
Musa , Frutas , Gusto , Odorantes , Antioxidantes
2.
Physiol Mol Biol Plants ; 27(2): 203-212, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33707863

RESUMEN

The high costs of N fertilizers in the coffee production emphasizes the need to optimize fertilization practices and improve nitrogen use efficiency. Urea is widespread in nature, characterizing itself as a significant source of nitrogen for the growth and development of several organisms. Thus, the characterization of genes involved in urea transport in coffee plants is an important research topic for the sustainable production of this valuable cash crop. In the current study, we evaluated the expression of the DUR3 gene under abiotic and biotic stresses in coffee plants. Here, we show that the expression of a high-affinity urea transporter gene (CaDUR3) was up-regulated by N starvation in leaves and roots of two out of three C. arabica cultivars examined. Moreover, the CaDUR3 gene was differentially expressed in coffee plants under different abiotic and biotic stresses. In plants of cv. IAPAR59, CaDUR3 showed an increased expression in leaves after exposure to water deficit and heat stress, while it was downregulated in plants under salinity. Upon infection with H. vastatrix (coffee rust), the CaDUR3 was markedly up-regulated at the beginning of the infection process in the disease susceptible Catuaí Vermelho 99 in comparison with the resistant cultivar. These results indicate that besides urea acquisition and N-remobilization, CaDUR3 gene may be closely involved in the response to various stresses.

3.
Funct Integr Genomics ; 19(1): 151-169, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30196429

RESUMEN

Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.


Asunto(s)
Coffea/genética , MicroARNs/genética , Nitrógeno/deficiencia , ARN Mensajero/genética , ARN de Planta/genética , ARN Pequeño no Traducido/genética , Aminoácidos/aislamiento & purificación , Aminoácidos/metabolismo , Compuestos de Amonio/metabolismo , Coffea/metabolismo , Regulación de la Expresión Génica de las Plantas , Ontología de Genes , Secuenciación de Nucleótidos de Alto Rendimiento , MicroARNs/clasificación , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Nitratos/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Poli A/genética , Poli A/metabolismo , ARN Mensajero/clasificación , ARN Mensajero/metabolismo , ARN de Planta/clasificación , ARN de Planta/metabolismo , ARN Pequeño no Traducido/clasificación , ARN Pequeño no Traducido/metabolismo , Semillas/genética , Semillas/metabolismo , Estrés Fisiológico , Transcriptoma
4.
Sci Rep ; 10(1): 12048, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32694584

RESUMEN

Capsicum annuum is one of the most important horticultural crops worldwide. Anthracnose disease (Colletotrichum spp.) is a major constraint for chili production, causing substantial losses. Capsidiol is a sesquiterpene phytoalexin present in pepper fruits that can enhance plant resistance. The genetic mechanisms involved in capisidiol biosynthesis are still poorly understood. In this study, a 3' RNA sequencing approach was used to develop the transcriptional profile dataset of C. annuum genes in unripe (UF) and ripe fruits (RF) in response to C. scovillei infection. Results showed 4,845 upregulated and 4,720 downregulated genes in UF, and 2,560 upregulated and 1,762 downregulated genes in RF under fungus inoculation. Four capsidiol-related genes were selected for RT-qPCR analysis, two 5-epi-aristolochene synthase (CA12g05030, CA02g09520) and two 5-epi-aristolochene-1,3-dihydroxylase genes (CA12g05070, CA01g05990). CA12g05030 and CA01g05990 genes showed an early response to fungus infection in RF (24 h post-inoculation-HPI), being 68-fold and 53-fold more expressed at 96 HPI, respectively. In UF, all genes showed a late response, especially CA12g05030, which was 700-fold more expressed at 96 HPI compared to control plants. We are proving here the first high-throughput expression dataset of pepper fruits in response to anthracnose disease in order to contribute for future pepper breeding programs.


Asunto(s)
Capsicum/genética , Capsicum/microbiología , Colletotrichum , Frutas/genética , Regulación de la Expresión Génica de las Plantas , Desarrollo de la Planta/genética , Sesquiterpenos/metabolismo , Biología Computacional/métodos , Minería de Datos , Frutas/metabolismo , Perfilación de la Expresión Génica , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Transcriptoma
5.
Funct Integr Genomics ; 19(1): p. 151-169, 2019.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15784

RESUMEN

Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.

6.
Funct Integr Genomics, v. 19, n. 1, p.151-169, jan. 2019
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2649

RESUMEN

Coffea arabica L. is an important agricultural commodity, accounting for 60% of traded coffee worldwide. Nitrogen (N) is a macronutrient that is usually limiting to plant yield; however, molecular mechanisms of plant acclimation to N limitation remain largely unknown in tropical woody crops. In this study, we investigated the transcriptome of coffee roots under N starvation, analyzing poly-A+ libraries and small RNAs. We also evaluated the concentration of selected amino acids and N-source preferences in roots. Ammonium was preferentially taken up over nitrate, and asparagine and glutamate were the most abundant amino acids observed in coffee roots. We obtained 34,654 assembled contigs by mRNA sequencing, and validated the transcriptional profile of 12 genes by RT-qPCR. Illumina small RNA sequencing yielded 8,524,332 non-redundant reads, resulting in the identification of 86 microRNA families targeting 253 genes. The transcriptional pattern of eight miRNA families was also validated. To our knowledge, this is the first catalog of differentially regulated amino acids, N sources, mRNAs, and sRNAs in Arabica coffee roots.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda