Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 149(3): 630-41, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22541433

RESUMEN

In female mouse embryos, somatic cells undergo a random form of X chromosome inactivation (XCI), whereas extraembryonic trophoblast cells in the placenta undergo imprinted XCI, silencing exclusively the paternal X chromosome. Initiation of imprinted XCI requires a functional maternal allele of the X-linked gene Rnf12, which encodes the ubiquitin ligase Rnf12/RLIM. We find that knockout (KO) of Rnf12 in female mammary glands inhibits alveolar differentiation and milk production upon pregnancy, with alveolar cells that lack RLIM undergoing apoptosis as they begin to differentiate. Genetic analyses demonstrate that these functions are mediated primarily by the paternal Rnf12 allele due to nonrandom maternal XCI in mammary epithelial cells. These results identify paternal Rnf12/RLIM as a critical survival factor for milk-producing alveolar cells and, together with population models, reveal implications of transgenerational epigenetic inheritance.


Asunto(s)
Supervivencia Celular , Glándulas Mamarias Animales/citología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Epigénesis Genética , Femenino , Impresión Genómica , Masculino , Glándulas Mamarias Animales/fisiología , Ratones , Embarazo , Ubiquitina-Proteína Ligasas/genética , Inactivación del Cromosoma X
2.
Proc Natl Acad Sci U S A ; 120(52): e2313200120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38113263

RESUMEN

In female mice, the gene dosage from X chromosomes is adjusted by a process called X chromosome inactivation (XCI) that occurs in two steps. An imprinted form of XCI (iXCI) that silences the paternally inherited X chromosome (Xp) is initiated at the 2- to 4-cell stages. As extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI require the lncRNA Xist, which is expressed from the X to be inactivated. The X-linked E3 ubiquitin ligase Rlim (Rnf12) in conjunction with its target protein Rex1 (Zfp42), a critical repressor of Xist, have emerged as major regulators of iXCI. However, their roles in rXCI remain controversial. Investigating early mouse development, we show that the Rlim-Rex1 axis is active in pre-implantation embryos. Upon implantation Rex1 levels are downregulated independently of Rlim specifically in epiblast cells. These results provide a conceptual framework of how the functional dynamics between Rlim and Rex1 ensures regulation of iXCI but not rXCI in female mice.


Asunto(s)
ARN Largo no Codificante , Inactivación del Cromosoma X , Animales , Femenino , Ratones , Embrión de Mamíferos/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Cromosoma X/genética , Cromosoma X/metabolismo , Inactivación del Cromosoma X/genética
3.
Biochem Soc Trans ; 52(3): 1099-1107, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38747697

RESUMEN

The long non-coding RNA (lncRNA) Xist is crucially involved in a process called X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female mammals to achieve X dosage compensation between the sexes. Because Xist RNA silences the X chromosome from which it is transcribed, the activation of Xist transcription marks the initiation of the XCI process and thus, mechanisms and players that activate this gene are of central importance to the XCI process. During female mouse embryogenesis, XCI occurs in two steps. At the 2-4 cell stages imprinted XCI (iXCI) silences exclusively the paternally inherited X chromosome (Xp). While extraembryonic cells including trophoblasts keep the Xp silenced, epiblast cells that give rise to the embryo proper reactivate the Xp and undergo random XCI (rXCI) around implantation. Both iXCI and rXCI are dependent on Xist. Rlim, also known as Rnf12, is an X-linked E3 ubiquitin ligase that is involved in the transcriptional activation of Xist. However, while data on the crucial involvement of Rlim during iXCI appear clear, its role in rXCI has been controversial. This review discusses data leading to this disagreement and recent evidence for a regulatory switch of Xist transcription in epiblasts of implanting embryos, partially reconciling the roles of Rlim during Xist activation.


Asunto(s)
ARN Largo no Codificante , Ubiquitina-Proteína Ligasas , Inactivación del Cromosoma X , Animales , Femenino , Ratones , Regulación del Desarrollo de la Expresión Génica , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Cromosoma X/genética , Cromosoma X/metabolismo
4.
Nature ; 511(7507): 86-9, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24870238

RESUMEN

In female mice, two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X chromosome. Later, around implantation, epiblast cells of the inner cell mass that give rise to the embryo reactivate the paternal X chromosome and undergo a random form of XCI (rXCI). Xist, a long non-coding RNA crucial for both forms of XCI, is activated by the ubiquitin ligase RLIM (also known as Rnf12). Although RLIM is required for triggering iXCI in mice, its importance for rXCI has been controversial. Here we show that RLIM levels are downregulated in embryonic cells undergoing rXCI. Using mouse genetics we demonstrate that female cells lacking RLIM from pre-implantation stages onwards show hallmarks of XCI, including Xist clouds and H3K27me3 foci, and have full embryogenic potential. These results provide evidence that RLIM is dispensable for rXCI, indicating that in mice an RLIM-independent mechanism activates Xist in the embryo proper.


Asunto(s)
Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inactivación del Cromosoma X/genética , Animales , Regulación hacia Abajo , Implantación del Embrión , Embrión de Mamíferos/embriología , Embrión de Mamíferos/metabolismo , Femenino , Histonas/química , Histonas/metabolismo , Hibridación Fluorescente in Situ , Lisina/metabolismo , Metilación , Ratones , Ratones Noqueados , ARN Largo no Codificante/genética , Ubiquitina-Proteína Ligasas/genética
5.
Proc Natl Acad Sci U S A ; 113(12): 3197-202, 2016 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-26951653

RESUMEN

Dynamic epigenetic reprogramming occurs during normal embryonic development at the preimplantation stage. Erroneous epigenetic modifications due to environmental perturbations such as manipulation and culture of embryos during in vitro fertilization (IVF) are linked to various short- or long-term consequences. Among these, the skewed sex ratio, an indicator of reproductive hazards, was reported in bovine and porcine embryos and even human IVF newborns. However, since the first case of sex skewing reported in 1991, the underlying mechanisms remain unclear. We reported herein that sex ratio is skewed in mouse IVF offspring, and this was a result of female-biased peri-implantation developmental defects that were originated from impaired imprinted X chromosome inactivation (iXCI) through reduced ring finger protein 12 (Rnf12)/X-inactive specific transcript (Xist) expression. Compensation of impaired iXCI by overexpression of Rnf12 to up-regulate Xist significantly rescued female-biased developmental defects and corrected sex ratio in IVF offspring. Moreover, supplementation of an epigenetic modulator retinoic acid in embryo culture medium up-regulated Rnf12/Xist expression, improved iXCI, and successfully redeemed the skewed sex ratio to nearly 50% in mouse IVF offspring. Thus, our data show that iXCI is one of the major epigenetic barriers for the developmental competence of female embryos during preimplantation stage, and targeting erroneous epigenetic modifications may provide a potential approach for preventing IVF-associated complications.


Asunto(s)
Cromosomas Humanos X , Impresión Genómica , Razón de Masculinidad , Inactivación del Cromosoma X , Femenino , Fertilización In Vitro , Humanos
6.
Nature ; 467(7318): 977-81, 2010 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-20962847

RESUMEN

Two forms of X-chromosome inactivation (XCI) ensure the selective silencing of female sex chromosomes during mouse embryogenesis. Imprinted XCI begins with the detection of Xist RNA expression on the paternal X chromosome (Xp) at about the four-cell stage of embryonic development. In the embryonic tissues of the inner cell mass, a random form of XCI occurs in blastocysts that inactivates either Xp or the maternal X chromosome (Xm). Both forms of XCI require the non-coding Xist RNA that coats the inactive X chromosome from which it is expressed. Xist has crucial functions in the silencing of X-linked genes, including Rnf12 (refs 3, 4) encoding the ubiquitin ligase RLIM (RING finger LIM-domain-interacting protein). Here we show, by targeting a conditional knockout of Rnf12 to oocytes where RLIM accumulates to high levels, that the maternal transmission of the mutant X chromosome (Δm) leads to lethality in female embryos as a result of defective imprinted XCI. We provide evidence that in Δm female embryos the initial formation of Xist clouds and Xp silencing are inhibited. In contrast, embryonic stem cells lacking RLIM are able to form Xist clouds and silence at least some X-linked genes during random XCI. These results assign crucial functions to the maternal deposit of Rnf12/RLIM for the initiation of imprinted XCI.


Asunto(s)
Cromosomas de los Mamíferos/genética , Impresión Genómica , Madres , Proteínas Represoras/metabolismo , Inactivación del Cromosoma X/genética , Cromosoma X/genética , Animales , Animales Congénicos , Blastocisto/metabolismo , Línea Celular , Pérdida del Embrión/genética , Padre , Femenino , Silenciador del Gen , Masculino , Ratones , Ratones Transgénicos , ARN Largo no Codificante , ARN no Traducido/genética , Proteínas Represoras/deficiencia , Proteínas Represoras/genética , Ubiquitina-Proteína Ligasas
7.
Proc Natl Acad Sci U S A ; 108(27): E265-74, 2011 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-21690374

RESUMEN

The sequential production of neurons and astrocytes from neuroepithelial precursors is a fundamental feature of central nervous system development. We report that LIM-homeodomain (LIM-HD) transcription factor Lhx2 regulates this transition in the developing hippocampus. Disrupting Lhx2 function in the embryonic hippocampus by in utero electroporation and in organotypic slice culture caused the premature production of astrocytes at stages when neurons are normally generated. Lhx2 function is therefore necessary to suppress astrogliogenesis during the neurogenic period. Furthermore, Lhx2 overexpression was sufficient to suppress astrogliogenesis and prolong the neurogenic period. We provide evidence that Lhx2 overexpression can counteract the instructive astrogliogenic effect of Notch activation. Lhx2 overexpression was also able to override and suppress the activation of the GFAP promoter by Nfia, a Notch-regulated transcription factor that is required for gliogenesis. Thus, Lhx2 appears to act as a "brake" on Notch/Nfia-mediated astrogliogenesis. This critical role for Lhx2 is spatially restricted to the hippocampus, because loss of Lhx2 function in the neocortex did not result in premature astrogliogenesis at the expense of neurogenesis. Our results therefore place Lhx2 as a central regulator of the neuron-glia cell fate decision in the hippocampus and reveal a striking regional specificity of this fundamental function within the dorsal telencephalon.


Asunto(s)
Hipocampo/embriología , Proteínas de Homeodominio/fisiología , Neurogénesis/fisiología , Factores de Transcripción/fisiología , Animales , Astrocitos/citología , Astrocitos/fisiología , Células Madre Embrionarias/citología , Células Madre Embrionarias/fisiología , Femenino , Hipocampo/citología , Hipocampo/fisiología , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Ratones , Ratones Noqueados , Ratones Transgénicos , Factores de Transcripción NFI/fisiología , Neocórtex/citología , Neocórtex/embriología , Neocórtex/fisiología , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Neurogénesis/genética , Fenotipo , Embarazo , Receptores Notch/fisiología , Factores de Transcripción/deficiencia , Factores de Transcripción/genética
8.
J Neurosci ; 32(13): 4426-39, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22457492

RESUMEN

The C-type lectin chondrolectin (chodl) represents one of the major gene products dysregulated in spinal muscular atrophy models in mice. However, to date, no function has been determined for the gene. We have identified chodl and other novel genes potentially involved in motor axon differentiation, by expression profiling of transgenically labeled motor neurons in embryonic zebrafish. To enrich the profile for genes involved in differentiation of peripheral motor axons, we inhibited the function of LIM-HDs (LIM homeodomain factors) by overexpression of a dominant-negative cofactor, thereby rendering labeled axons unable to grow out of the spinal cord. Importantly, labeled cells still exhibited axon growth and most cells retained markers of motor neuron identity. Functional tests of chodl, by overexpression and knockdown, confirm crucial functions of this gene for motor axon growth in vivo. Indeed, knockdown of chodl induces arrest or stalling of motor axon growth at the horizontal myoseptum, an intermediate target and navigational choice point, and reduced muscle innervation at later developmental stages. This phenotype is rescued by chodl overexpression, suggesting that correct expression levels of chodl are important for interactions of growth cones of motor axons with the horizontal myoseptum. Combined, these results identify upstream regulators and downstream functions of chodl during motor axon growth.


Asunto(s)
Axones/fisiología , Conos de Crecimiento/fisiología , Lectinas Tipo C/fisiología , Neuronas Motoras/fisiología , Animales , Animales Modificados Genéticamente , Femenino , Perfilación de la Expresión Génica/métodos , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen/métodos , Proteínas con Homeodominio LIM/antagonistas & inhibidores , Proteínas con Homeodominio LIM/genética , Lectinas Tipo C/genética , Masculino , Neuronas Motoras/citología , Transducción de Señal/genética , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
9.
Hum Mol Genet ; 20(9): 1701-11, 2011 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-21300694

RESUMEN

Spinal muscular atrophy (SMA), an inherited disease of motor neuron dysfunction, results from insufficient levels of the survival motor neuron (SMN) protein. Movement of the SMN protein as granules within cultured axons suggests that the pathogenesis of SMA may involve defects in neuronal transport, yet the nature of axon transport vesicles remains enigmatic. Here we show that SMN directly binds to the α-subunit of the coat protein I (COPI) vesicle coat protein. The α-COP protein co-immunoprecipitates with SMN, small nuclear ribonucleoprotein-associated assembly factors and ß-actin mRNA. Although typically Golgi associated, in neuronal cells α-COP localizes to lamellipodia and growth cones and moves within the axon, with a subset of these granules traveling together with SMN. Depletion of α-COP resulted in mislocalization of SMN and actin at the leading edge at the lamellipodia. We propose that neurons utilize the Golgi-associated COPI vesicle to deliver cargoes necessary for motor neuron integrity and function.


Asunto(s)
Axones/metabolismo , Proteína Coat de Complejo I/metabolismo , Neuronas Motoras/metabolismo , Atrofia Muscular Espinal/metabolismo , Vesículas Transportadoras/metabolismo , Animales , Línea Celular , Supervivencia Celular , Proteína Coat de Complejo I/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Neuronas Motoras/citología , Atrofia Muscular Espinal/genética , Unión Proteica , Transporte de Proteínas , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Vesículas Transportadoras/genética
10.
Dev Biol ; 349(2): 213-24, 2011 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-21056553

RESUMEN

The developmental activity of LIM homeodomain transcription factors (LIM-HDs) is critically controlled by LIM domain-interacting cofactors of LIM-HDs (CLIM, also known as NLI or LDB). CLIM cofactors associate with single-stranded DNA binding proteins (SSDPs, also known as SSBPs) thereby recruiting SSDP1 and/or SSDP2 to LIM-HD/CLIM complexes. Although evidence has been presented that SSDPs are important for the activity of specific LIM-HD/CLIM complexes, the developmental roles of SSDPs are unclear. We show that SSDP1a and SSDP1b mRNAs are widely expressed early during zebrafish development with conspicuous expression of SSDP1b in sensory trigeminal and Rohon-Beard neurons. SSDP1 and CLIM immunoreactivity co-localize in these neuronal cell types and in other structures. Over-expression of the N-terminal portion of SSDP1 (N-SSDP1), which contains the CLIM-interaction domain, increases endogenous CLIM protein levels in vivo and impairs the formation of eyes and midbrain-hindbrain boundary. In addition, manipulation of SSDP1 via N-SSDP1 over-expression or SSDP1b knock down impairs trigeminal and Rohon-Beard sensory axon growth. We show that N-SSDP1 is able to partially rescue the inhibition of axon growth induced by a dominant-negative form of CLIM (DN-CLIM). These results reveal specific functions of SSDP in neural patterning and sensory axon growth, in part due to the stabilization of LIM-HD/CLIM complexes.


Asunto(s)
Axones/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación del Desarrollo de la Expresión Génica/fisiología , Neurogénesis/fisiología , Células Receptoras Sensoriales/fisiología , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Animales , Western Blotting , Diferenciación Celular/fisiología , Cartilla de ADN/genética , Proteínas de Unión al ADN/genética , Inmunohistoquímica , Hibridación in Situ , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Receptoras Sensoriales/metabolismo
11.
EMBO J ; 27(14): 2018-29, 2008 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-18583962

RESUMEN

LIM-homeodomain (LIM-HD) transcription factors form a combinatorial 'LIM code' that contributes to the specification of cell types. In the ventral spinal cord, the binary LIM homeobox protein 3 (Lhx3)/LIM domain-binding protein 1 (Ldb1) complex specifies the formation of V2 interneurons. The additional expression of islet-1 (Isl1) in adjacent cells instead specifies the formation of motor neurons through assembly of a ternary complex in which Isl1 contacts both Lhx3 and Ldb1, displacing Lhx3 as the binding partner of Ldb1. However, little is known about how this molecular switch occurs. Here, we have identified the 30-residue Lhx3-binding domain on Isl1 (Isl1(LBD)). Although the LIM interaction domain of Ldb1 (Ldb1(LID)) and Isl1(LBD) share low levels of sequence homology, X-ray and NMR structures reveal that they bind Lhx3 in an identical manner, that is, Isl1(LBD) mimics Ldb1(LID). These data provide a structural basis for the formation of cell type-specific protein-protein interactions in which unstructured linear motifs with diverse sequences compete to bind protein partners. The resulting alternate protein complexes can target different genes to regulate key biological events.


Asunto(s)
Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Proteínas de Homeodominio/química , Proteínas de Homeodominio/metabolismo , Cristalografía por Rayos X , Proteínas de Unión al ADN/genética , Proteínas de Homeodominio/genética , Humanos , Proteínas con Dominio LIM , Proteínas con Homeodominio LIM , Modelos Moleculares , Mutagénesis , Resonancia Magnética Nuclear Biomolecular , Dominios y Motivos de Interacción de Proteínas , Termodinámica , Factores de Transcripción , Técnicas del Sistema de Dos Híbridos
12.
Sci Signal ; 15(742): eabm5995, 2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35857630

RESUMEN

The E3 ubiquitin ligase RNF12 plays essential roles during development, and the gene encoding it, RLIM, is mutated in the X-linked human developmental disorder Tonne-Kalscheuer syndrome (TOKAS). Substrates of RNF12 include transcriptional regulators such as the pluripotency-associated transcriptional repressor REX1. Using global quantitative proteomics in male mouse embryonic stem cells, we identified the deubiquitylase USP26 as a putative downstream target of RNF12 activity. RNF12 relieved REX1-mediated repression of Usp26, leading to an increase in USP26 abundance and the formation of RNF12-USP26 complexes. Interaction with USP26 prevented RNF12 autoubiquitylation and proteasomal degradation, thereby establishing a transcriptional feed-forward loop that amplified RNF12-dependent derepression of REX1 targets. We showed that the RNF12-USP26 axis operated specifically in mouse testes and was required for the expression of gametogenesis genes and for germ cell differentiation in vitro. Furthermore, this RNF12-USP26 axis was disrupted by RLIM and USP26 variants found in TOKAS and infertility patients, respectively. This work reveals synergy within the ubiquitylation cycle that controls a key developmental process in gametogenesis and that is disrupted in human genetic disorders.


Asunto(s)
Factores de Transcripción , Ubiquitina-Proteína Ligasas , Animales , Cisteína Endopeptidasas/genética , Células Germinativas/metabolismo , Humanos , Masculino , Ratones , Mutación , Factores de Transcripción/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
13.
Elife ; 102021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33620316

RESUMEN

The X-linked gene Rlim plays major roles in female mouse development and reproduction, where it is crucial for the maintenance of imprinted X chromosome inactivation in extraembryonic tissues of embryos. However, while females carrying a systemic Rlim knockout (KO) die around implantation, male Rlim KO mice appear healthy and are fertile. Here, we report an important role for Rlim in testis where it is highly expressed in post-meiotic round spermatids as well as in Sertoli cells. Systemic deletion of the Rlim gene results in lower numbers of mature sperm that contains excess cytoplasm, leading to decreased sperm motility and in vitro fertilization rates. Targeting the conditional Rlim cKO specifically to the spermatogenic cell lineage largely recapitulates this phenotype. These results reveal functions of Rlim in male reproduction specifically in round spermatids during spermiogenesis.


Asunto(s)
Células de Sertoli/metabolismo , Espermatogénesis/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Genes Ligados a X , Masculino , Ratones , Ratones Noqueados , Ubiquitina-Proteína Ligasas/deficiencia
14.
Trends Biochem Sci ; 28(4): 189-95, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12713902

RESUMEN

The nucleus of the eukaryotic cell must carry out many functions simultaneously. These tasks include ensuring that the cell is continuously supplied with an appropriate, changing set of proteins on its way through cell divisions and differentiation. During these processes, the integrity of the genetic material must be maintained against a constant onslaught of damaging physiological and environmental factors. Fulfilling these complex tasks requires the dynamic integration and synchronization of different nuclear functions. Protein modification by ubiquitin is proving to be a crucial tool for nuclear functioning, and is emerging as a decisive mechanism that enables the concerted regulation of nuclear pathways.


Asunto(s)
Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Ubiquitina/metabolismo , Animales , Reparación del ADN , Replicación del ADN , Histonas/metabolismo , Ligasas/metabolismo , Transcripción Genética , Ubiquitina-Proteína Ligasas
15.
Front Cell Dev Biol ; 7: 258, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31737626

RESUMEN

RLIM/Rnf12 is an E3 ubiquitin ligase that has originally been identified as a transcriptional cofactor associated with LIM domain transcription factors. Indeed, this protein modulates transcriptional activities and multiprotein complexes recruited by several classes of transcription factors thereby enhancing or repressing transcription. Around 10 years ago, RLIM/Rnf12 has been identified as a major regulator for the process of X chromosome inactivation (XCI), the transcriptional silencing of one of the two X chromosomes in female mice and ESCs. However, the precise roles of RLIM during XCI have been controversial. Here, we discuss the cellular and developmental functions of RLIM as an E3 ubiquitin ligase and its roles during XCI in conjunction with its target protein Rex1.

16.
Artículo en Inglés | MEDLINE | ID: mdl-18391431

RESUMEN

A stable intramolecular complex comprising the LIM domains of the LIM-homeodomain protein Lhx3 tethered to a peptide region of Isl1 has been engineered, purified and crystallized. The monoclinic crystals belong to space group C2, with unit-cell parameters a = 119, b = 62.2, c = 51.9 A, beta = 91.6 degrees , and diffract to 2.05 A resolution.


Asunto(s)
Proteínas de Homeodominio/química , Cristalización , Vectores Genéticos/síntesis química , Proteínas de Homeodominio/biosíntesis , Proteínas de Homeodominio/síntesis química , Proteínas de Homeodominio/genética , Proteínas con Homeodominio LIM , Ingeniería de Proteínas , Factores de Transcripción , Dedos de Zinc/genética
17.
Cell Rep ; 19(4): 671-679, 2017 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-28445719

RESUMEN

Although histone-modifying enzymes are generally assumed to function in a manner dependent on their enzymatic activities, this assumption remains untested for many factors. Here, we show that the Tip60 (Kat5) lysine acetyltransferase (KAT), which is essential for embryonic stem cell (ESC) self-renewal and pre-implantation development, performs these functions independently of its KAT activity. Unlike ESCs depleted of Tip60, KAT-deficient ESCs exhibited minimal alterations in gene expression, chromatin accessibility at Tip60 binding sites, and self-renewal, thus demonstrating a critical KAT-independent role of Tip60 in ESC maintenance. In contrast, KAT-deficient ESCs exhibited impaired differentiation into mesoderm and endoderm, demonstrating a KAT-dependent function in differentiation. Consistent with this phenotype, KAT-deficient mouse embryos exhibited post-implantation developmental defects. These findings establish separable KAT-dependent and KAT-independent functions of Tip60 in ESCs and during differentiation, revealing a complex repertoire of regulatory functions for this essential chromatin remodeling complex.


Asunto(s)
Autorrenovación de las Células/fisiología , Lisina Acetiltransferasa 5/metabolismo , Transactivadores/metabolismo , Animales , Diferenciación Celular , Línea Celular , Cromatina/metabolismo , Ensamble y Desensamble de Cromatina , Endodermo/metabolismo , Endodermo/patología , Regulación del Desarrollo de la Expresión Génica , Histonas/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/química , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Lisina Acetiltransferasa 5/deficiencia , Lisina Acetiltransferasa 5/genética , Mesodermo/metabolismo , Mesodermo/patología , Ratones , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/metabolismo , Regiones Promotoras Genéticas , Proteína Smad2/metabolismo , Proteína smad3/metabolismo , Transactivadores/deficiencia , Transactivadores/genética
18.
Cell Rep ; 21(13): 3691-3699, 2017 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-29281819

RESUMEN

During female mouse embryogenesis, two forms of X chromosome inactivation (XCI) ensure dosage compensation from sex chromosomes. Beginning at the four-cell stage, imprinted XCI (iXCI) exclusively silences the paternal X (Xp), and this pattern is maintained in extraembryonic cell types. Epiblast cells, which give rise to the embryo proper, reactivate the Xp (XCR) and undergo a random form of XCI (rXCI) around implantation. Both iXCI and rXCI depend on the long non-coding RNA Xist. The ubiquitin ligase RLIM is required for iXCI in vivo and occupies a central role in current models of rXCI. Here, we demonstrate the existence of Rlim-dependent and Rlim-independent pathways for rXCI in differentiating female ESCs. Upon uncoupling these pathways, we find more efficient Rlim-independent XCI in ESCs cultured under physiological oxygen conditions. Our results revise current models of rXCI and suggest that caution must be taken when comparing XCI studies in ESCs and mice.


Asunto(s)
Células Madre Embrionarias de Ratones/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Inactivación del Cromosoma X/genética , Animales , Técnicas de Cultivo de Célula , Femenino , Ratones , Proteínas Mutantes/metabolismo
19.
Elife ; 52016 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-27642011

RESUMEN

Mammalian X-linked gene expression is highly regulated as female cells contain two and male one X chromosome (X). To adjust the X gene dosage between genders, female mouse preimplantation embryos undergo an imprinted form of X chromosome inactivation (iXCI) that requires both Rlim (also known as Rnf12) and the long non-coding RNA Xist. Moreover, it is thought that gene expression from the single active X is upregulated to correct for bi-allelic autosomal (A) gene expression. We have combined mouse genetics with RNA-seq on single mouse embryos to investigate functions of Rlim on the temporal regulation of iXCI and Xist. Our results reveal crucial roles of Rlim for the maintenance of high Xist RNA levels, Xist clouds and X-silencing in female embryos at blastocyst stages, while initial Xist expression appears Rlim-independent. We find further that X/A upregulation is initiated in early male and female preimplantation embryos.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Genes Ligados a X , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Ratones , ARN Largo no Codificante/metabolismo , Análisis de Secuencia de ARN , Inactivación del Cromosoma X
20.
Mech Dev ; 117(1-2): 75-85, 2002 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12204249

RESUMEN

The crucial involvement of CLIM/NLI/Ldb cofactors for the exertion of the biological activity of LIM homeodomain transcription factors (LIM-HD) has been demonstrated. In this paper we show that CLIM cofactors are widely expressed during zebrafish development with high protein levels in specific neuronal cell types where LIM-HD proteins of the Isl class are synthesized. The overexpression of a dominant-negative CLIM molecule (DN-CLIM) that contains the LIM interaction domain (LID) during early developmental stages of zebrafish embryos results in an impairment of eye and midbrain-hindbrain boundary (MHB) development and disturbances in the formation of the anterior midline. On a cellular level we show that the outgrowth of peripheral but not central axons from Rohon Beard (RB) and trigeminal sensory neurons is inhibited by DN-CLIM overexpression. We demonstrate a further critical role of CLIM cofactors for axonal outgrowth of motor neurons. Additionally, DN-CLIM overexpression causes an increase of Isl-protein expression levels in specific neuronal cell types, likely due to a protection of the DN-CLIM/LIM-HD complex from proteasomal degradation. Our results demonstrate multiple roles of the CLIM cofactor family for the development of entire organs, axonal outgrowth of specific neurons and protein expression levels.


Asunto(s)
Proteínas de Homeodominio/metabolismo , Factores de Transcripción/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Axones/metabolismo , Axones/ultraestructura , Encéfalo/embriología , Encéfalo/metabolismo , Ojo/embriología , Ojo/metabolismo , Regulación del Desarrollo de la Expresión Génica , Genes Homeobox , Proteínas de Homeodominio/genética , Inmunohistoquímica , Hibridación in Situ , Neuronas/metabolismo , Factores de Transcripción/genética , Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda