Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Physiol Rev ; 103(1): 957-1024, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35951481

RESUMEN

Peroxisomes are subcellular organelles that play a central role in human physiology by catalyzing a range of unique metabolic functions. The importance of peroxisomes for human health is exemplified by the existence of a group of usually severe diseases caused by an impairment in one or more peroxisomal functions. Among others these include the Zellweger spectrum disorders, X-linked adrenoleukodystrophy, and Refsum disease. To fulfill their role in metabolism, peroxisomes require continued interaction with other subcellular organelles including lipid droplets, lysosomes, the endoplasmic reticulum, and mitochondria. In recent years it has become clear that the metabolic alliance between peroxisomes and other organelles requires the active participation of tethering proteins to bring the organelles physically closer together, thereby achieving efficient transfer of metabolites. This review intends to describe the current state of knowledge about the metabolic role of peroxisomes in humans, with particular emphasis on the metabolic partnership between peroxisomes and other organelles and the consequences of genetic defects in these processes. We also describe the biogenesis of peroxisomes and the consequences of the multiple genetic defects therein. In addition, we discuss the functional role of peroxisomes in different organs and tissues and include relevant information derived from model systems, notably peroxisomal mouse models. Finally, we pay particular attention to a hitherto underrated role of peroxisomes in viral infections.


Asunto(s)
Peroxisomas , Animales , Humanos , Ratones
2.
Proc Natl Acad Sci U S A ; 120(43): e2301733120, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37862382

RESUMEN

Retinal pigment epithelium (RPE) cells have to phagocytose shed photoreceptor outer segments (POS) on a daily basis over the lifetime of an organism, but the mechanisms involved in the digestion and recycling of POS lipids are poorly understood. Although it was frequently assumed that peroxisomes may play an essential role, this was never investigated. Here, we show that global as well as RPE-selective loss of peroxisomal ß-oxidation in multifunctional protein 2 (MFP2) knockout mice impairs the digestive function of lysosomes in the RPE at a very early age, followed by RPE degeneration. This was accompanied by prolonged mammalian target of rapamycin activation, lipid deregulation, and mitochondrial structural anomalies without, however, causing oxidative stress or energy shortage. The RPE degeneration caused secondary photoreceptor death. Notably, the deterioration of the RPE did not occur in an Mfp2/rd1 mutant mouse line, characterized by absent POS shedding. Our findings prove that peroxisomal ß-oxidation in the RPE is essential for handling the polyunsaturated fatty acids present in ingested POS and shed light on retinopathy in patients with peroxisomal disorders. Our data also have implications for gene therapy development as they highlight the importance of targeting the RPE in addition to the photoreceptor cells.


Asunto(s)
Lisosomas , Epitelio Pigmentado de la Retina , Ratones , Humanos , Animales , Epitelio Pigmentado de la Retina/metabolismo , Lisosomas/metabolismo , Fagocitosis/genética , Estrés Oxidativo , Ratones Noqueados , Mamíferos
3.
J Immunol ; 208(4): 839-850, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35074867

RESUMEN

Antioxidant systems maintain cellular redox (oxidation-reduction) homeostasis. In contrast with other key redox pathways, such as the thioredoxin system, glutathione, and NF-E2-related factor 2 (Nrf2), little is known about the function of the redox-sensitive organelle "peroxisome" in immune cells. In this study, we show that the absence of peroxisomes in conditional Pex5-deficient mice strikingly results in impaired homeostatic maintenance of innate-like B cells, namely, B1 and marginal zone B cells, which translates into a defective Ab response to Streptococcus pneumoniae Surprisingly, however, follicular B2 cell development, homeostatic maintenance, germinal center reactions, Ab production, class switching, and B cell memory formation were unaffected in Pex5-deficient animals. Similarly, T cell development and responses to viral infections also remained unaltered in the absence of Pex5 Thus, this study highlights the differential requirement of peroxisomes in distinct lymphocyte subtypes and may provide a rationale for specifically targeting peroxisomal metabolism in innate-like B cells in certain forms of B cell malignancies involving B1 cells.


Asunto(s)
Subgrupos de Linfocitos B/inmunología , Subgrupos de Linfocitos B/metabolismo , Linfopoyesis , Peroxisomas/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Animales , Formación de Anticuerpos/inmunología , Biomarcadores , Diferenciación Celular , Susceptibilidad a Enfermedades , Centro Germinal/inmunología , Centro Germinal/metabolismo , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Inmunización , Inmunofenotipificación , Tejido Linfoide/inmunología , Tejido Linfoide/metabolismo , Linfopoyesis/genética , Ratones , Ratones Noqueados , Oxidación-Reducción , Estrés Oxidativo , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/deficiencia , Infecciones Neumocócicas/inmunología , Infecciones Neumocócicas/microbiología , Streptococcus pneumoniae/inmunología
4.
Cell Mol Biol Lett ; 29(1): 67, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724891

RESUMEN

BACKGROUND: It is generally accepted that endothelial cells (ECs), primarily rely on glycolysis for ATP production, despite having functional mitochondria. However, it is also known that ECs are heterogeneous, and their phenotypic features depend on the vascular bed. Emerging evidence suggests that liver sinusoidal ECs (LSECs), located in the metabolically rich environment of the liver, show high metabolic plasticity. However, the substrate preference for energy metabolism in LSECs remains unclear. METHODS: Investigations were conducted in primary murine LSECs in vitro using the Seahorse XF technique for functional bioenergetic assays, untargeted mass spectrometry-based proteomics to analyse the LSEC proteome involved in energy metabolism pathways, liquid chromatography-tandem mass spectrometry-based analysis of acyl-carnitine species and Raman spectroscopy imaging to track intracellular palmitic acid. RESULTS: This study comprehensively characterized the energy metabolism of LSECs, which were found to depend on oxidative phosphorylation, efficiently fuelled by glucose-derived pyruvate, short- and medium-chain fatty acids and glutamine. Furthermore, despite its high availability, palmitic acid was not directly oxidized in LSEC mitochondria, as evidenced by the acylcarnitine profile and etomoxir's lack of effect on oxygen consumption. However, together with L-carnitine, palmitic acid supported mitochondrial respiration, which is compatible with the chain-shortening role of peroxisomal ß-oxidation of long-chain fatty acids before further degradation and energy generation in mitochondria. CONCLUSIONS: LSECs show a unique bioenergetic profile of highly metabolically plastic ECs adapted to the liver environment. The functional reliance of LSECs on oxidative phosphorylation, which is not a typical feature of ECs, remains to be determined.


Asunto(s)
Células Endoteliales , Metabolismo Energético , Ácidos Grasos , Hígado , Fosforilación Oxidativa , Animales , Hígado/metabolismo , Hígado/citología , Células Endoteliales/metabolismo , Ratones , Ácidos Grasos/metabolismo , Mitocondrias/metabolismo , Carnitina/metabolismo , Carnitina/análogos & derivados , Ácido Palmítico/metabolismo , Ratones Endogámicos C57BL , Masculino , Mitocondrias Hepáticas/metabolismo , Células Cultivadas , Oxidación-Reducción
5.
Int J Mol Sci ; 25(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38279294

RESUMEN

The retinal pigment epithelium (RPE) is an important monolayer of cells present in the outer retina, forming a major part of the blood-retina barrier (BRB). It performs many tasks essential for the maintenance of retinal integrity and function. With increasing knowledge of the retina, it is becoming clear that both common retinal disorders, like age-related macular degeneration, and rare genetic disorders originate in the RPE. This calls for a better understanding of the functions of various proteins within the RPE. In this regard, mice enabling an RPE-specific gene deletion are a powerful tool to study the role of a particular protein within the RPE cells in their native environment, simultaneously negating any potential influences of systemic changes. Moreover, since RPE cells interact closely with adjacent photoreceptors, these mice also provide an excellent avenue to study the importance of a particular gene function within the RPE to the retina as a whole. In this review, we outline and compare the features of various Cre mice created for this purpose, which allow for inducible or non-inducible RPE-specific knockout of a gene of interest. We summarize the various benefits and caveats involved in the use of such mouse lines, allowing researchers to make a well-informed decision on the choice of Cre mouse to use in relation to their research needs.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Ratones , Animales , Epitelio Pigmentado de la Retina/metabolismo , Retina , Células Fotorreceptoras , Degeneración Macular/genética , Degeneración Macular/metabolismo , Proteínas/metabolismo , Ratones Noqueados
6.
Exp Eye Res ; 228: 109406, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36740160

RESUMEN

Utilizing cell type-specific knockout mice has been an excellent tool for decades not only to explore the role of a gene in a specific cell, but also to unravel the underlying mechanism in diseases. To investigate the mechanistic association between dysfunction of the peroxisomal protein multifunctional protein 2 (MFP2) and retinopathy, we generated and phenotyped multiple transgenic mouse models with global or cell type-specific MFP2 deletion. These studies pointed to a potential role of MFP2 specifically in rod bipolar cells. To explore this, we aimed to create rod bipolar cell specific knockout mice of Mfp2 by crossing Mfp2L/L mice with L7Cre-2 mice (also known as PCP2Cre), generating L7-Mfp2-/- mice. L7Cre-2 mice express Cre recombinase under the control of the L7 promoter, which is believed to be exclusively expressed in rod bipolar cells and cerebellar Purkinje cells. Unexpectedly, only sporadic Cre activity was observed in the rod bipolar cells of L7-Mfp2-/- mice, despite efficient Cre recombination in cerebellar Purkinje cells. Moreover, a variable fraction of photoreceptors was targeted, which does not correspond with the supposed specificity of L7Cre-2 mice. These observations indicate that L7Cre-2 mice can be exploited to manipulate Purkinje cells in the cerebellum, whereas they cannot be used to generate rod bipolar cell specific knockout mice. For this aim, we suggest utilizing an independently generated mouse line named BAC-L7-IRES-Cre.


Asunto(s)
Células de Purkinje , Células Bipolares de la Retina , Ratones , Animales , Ratones Transgénicos , Ratones Noqueados
7.
EMBO J ; 36(15): 2187-2203, 2017 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-28637793

RESUMEN

In contrast to the general belief, endothelial cell (EC) metabolism has recently been identified as a driver rather than a bystander effect of angiogenesis in health and disease. Indeed, different EC subtypes present with distinct metabolic properties, which determine their function in angiogenesis upon growth factor stimulation. One of the main stimulators of angiogenesis is hypoxia, frequently observed in disease settings such as cancer and atherosclerosis. It has long been established that hypoxic signalling and metabolism changes are highly interlinked. In this review, we will provide an overview of the literature and recent findings on hypoxia-driven EC function and metabolism in health and disease. We summarize evidence on metabolic crosstalk between different hypoxic cell types with ECs and suggest new metabolic targets.


Asunto(s)
Células Endoteliales/patología , Células Endoteliales/fisiología , Hipoxia , Neovascularización Patológica , Neovascularización Fisiológica , Animales , Células Endoteliales/metabolismo , Humanos , Redes y Vías Metabólicas
8.
Hum Genet ; 140(4): 649-666, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33389129

RESUMEN

Peroxisomes, single-membrane intracellular organelles, play an important role in various metabolic pathways. The translocation of proteins from the cytosol to peroxisomes depends on peroxisome import receptor proteins and defects in peroxisome transport result in a wide spectrum of peroxisomal disorders. Here, we report a large consanguineous family with autosomal recessive congenital cataracts and developmental defects. Genome-wide linkage analysis localized the critical interval to chromosome 12p with a maximum two-point LOD score of 4.2 (θ = 0). Next-generation exome sequencing identified a novel homozygous missense variant (c.653 T > C; p.F218S) in peroxisomal biogenesis factor 5 (PEX5), a peroxisome import receptor protein. This missense mutation was confirmed by bidirectional Sanger sequencing. It segregated with the disease phenotype in the family and was absent in ethnically matched control chromosomes. The lens-specific knockout mice of Pex5 recapitulated the cataractous phenotype. In vitro import assays revealed a normal capacity of the mutant PEX5 to enter the peroxisomal Docking/Translocation Module (DTM) in the presence of peroxisome targeting signal 1 (PTS1) cargo protein, be monoubiquitinated and exported back into the cytosol. Importantly, the mutant PEX5 protein was unable to form a stable trimeric complex with peroxisomal biogenesis factor 7 (PEX7) and a peroxisome targeting signal 2 (PTS2) cargo protein and, therefore, failed to promote the import of PTS2 cargo proteins into peroxisomes. In conclusion, we report a novel missense mutation in PEX5 responsible for the defective import of PTS2 cargo proteins into peroxisomes resulting in congenital cataracts and developmental defects.


Asunto(s)
Catarata/genética , Mutación Missense , Señales de Direccionamiento al Peroxisoma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/genética , Peroxisomas/metabolismo , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Transporte Biológico Activo , Catarata/congénito , Catarata/metabolismo , Cromosomas Humanos Par 12 , Consanguinidad , Femenino , Ligamiento Genético , Humanos , Cristalino/metabolismo , Masculino , Ratones , Ratones Noqueados , Receptor de la Señal 1 de Direccionamiento al Peroxisoma/metabolismo , Proteína Sequestosoma-1/metabolismo , Secuenciación del Exoma
9.
Nature ; 520(7546): 192-197, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25830893

RESUMEN

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


Asunto(s)
Carbono/metabolismo , Células Endoteliales/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Nucleótidos/biosíntesis , Ácido Acético/farmacología , Adenosina Trifosfato/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico , ADN/biosíntesis , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Silenciador del Gen , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nucleótidos/química , Nucleótidos/farmacología , Oxidación-Reducción/efectos de los fármacos , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología
10.
Int J Mol Sci ; 22(8)2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33921065

RESUMEN

Peroxisomes are multifunctional organelles, well known for their role in cellular lipid homeostasis. Their importance is highlighted by the life-threatening diseases caused by peroxisomal dysfunction. Importantly, most patients suffering from peroxisomal biogenesis disorders, even those with a milder disease course, present with a number of ocular symptoms, including retinopathy. Patients with a selective defect in either peroxisomal α- or ß-oxidation or ether lipid synthesis also suffer from vision problems. In this review, we thoroughly discuss the ophthalmological pathology in peroxisomal disorder patients and, where possible, the corresponding animal models, with a special emphasis on the retina. In addition, we attempt to link the observed retinal phenotype to the underlying biochemical alterations. It appears that the retinal pathology is highly variable and the lack of histopathological descriptions in patients hampers the translation of the findings in the mouse models. Furthermore, it becomes clear that there are still large gaps in the current knowledge on the contribution of the different metabolic disturbances to the retinopathy, but branched chain fatty acid accumulation and impaired retinal PUFA homeostasis are likely important factors.


Asunto(s)
Peroxisomas/metabolismo , Retina/patología , Animales , Modelos Animales de Enfermedad , Metaboloma , Fosfolípidos/deficiencia , Retina/metabolismo , Enfermedades de la Retina/metabolismo , Enfermedades de la Retina/patología
11.
FASEB J ; 33(3): 4355-4364, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30540494

RESUMEN

Peroxisomes are essential organelles for the specialized oxidation of a wide variety of fatty acids, but they are also able to degrade fatty acids that are typically handled by mitochondria. Using a combination of pharmacological inhibition and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 genome editing technology to simultaneously manipulate peroxisomal and mitochondrial fatty acid ß-oxidation (FAO) in HEK-293 cells, we identified essential players in the metabolic crosstalk between these organelles. Depletion of carnitine palmitoyltransferase (CPT)2 activity through pharmacological inhibition or knockout (KO) uncovered a significant residual peroxisomal oxidation of lauric and palmitic acid, leading to the production of peroxisomal acylcarnitine intermediates. Generation and analysis of additional single- and double-KO cell lines revealed that the D-bifunctional protein (HSD17B4) and the peroxisomal ABC transporter ABCD3 are essential in peroxisomal oxidation of lauric and palmitic acid. Our results indicate that peroxisomes not only accept acyl-CoAs but can also oxidize acylcarnitines in a similar biochemical pathway. By using an Hsd17b4 KO mouse model, we demonstrated that peroxisomes contribute to the plasma acylcarnitine profile after acute inhibition of CPT2, proving in vivo relevance of this pathway. We summarize that peroxisomal FAO is important when mitochondrial FAO is defective or overloaded.-Violante, S., Achetib, N., van Roermund, C. W. T., Hagen, J., Dodatko, T., Vaz, F. M., Waterham, H. R., Chen, H., Baes, M., Yu, C., Argmann, C. A., Houten, S. M. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/fisiología , Ácidos Grasos/metabolismo , Proteína-2 Multifuncional Peroxisomal/fisiología , Peroxisomas/enzimología , Transportadoras de Casetes de Unión a ATP/deficiencia , Transportadoras de Casetes de Unión a ATP/genética , Animales , Sistemas CRISPR-Cas , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/fisiología , Células HEK293 , Humanos , Ácidos Láuricos/metabolismo , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/enzimología , Oxidación-Reducción , Ácido Palmítico/metabolismo , Enzima Bifuncional Peroxisomal/deficiencia , Proteína-2 Multifuncional Peroxisomal/deficiencia , Proteína-2 Multifuncional Peroxisomal/genética , Proteínas Recombinantes/metabolismo
12.
Adv Exp Med Biol ; 1299: 105-115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33417211

RESUMEN

The integrity of the cerebellum is exquisitely dependent on peroxisomal ß-oxidation metabolism. Patients with peroxisomal ß-oxidation defects commonly develop malformation, leukodystrophy, and/or atrophy of the cerebellum depending on the gene defect and on the severity of the mutation. By analyzing mouse models lacking the central peroxisomal ß-oxidation enzyme, multifunctional protein-2 (MFP2), either globally or in selected cell types, insights into the pathomechanisms could be obtained. All mouse models developed ataxia, but the onset was earlier in global and neural-selective (Nestin) Mfp2-/- knockout mice as compared to Purkinje cell (PC)-selective Mfp2 knockouts.At the histological level, this was associated with developmental anomalies in global and Nestin-Mfp2-/- mice, including aberrant wiring of PCs by parallel and climbing fibers and altered electrical properties of PCs. In all mouse models, dystrophy of PC axons with swellings initiating in the deep cerebellar nuclei and evolving to the proximal axon, preceded death of PCs. These degenerative features are in part mediated by deficient peroxisomal ß-oxidation within PCs but are accelerated when MFP2 is also absent from other neural cell types. The metabolic causes of the diverse cerebellar pathologies remain unknown.In conclusion, peroxisomal ß-oxidation is required both for the development and for the maintenance of the cerebellum. This is mediated by PC autonomous and nonautonomous mechanisms.


Asunto(s)
Cerebelo/metabolismo , Cerebelo/patología , Peroxisomas/metabolismo , Animales , Axones/metabolismo , Axones/patología , Humanos , Oxidación-Reducción , Células de Purkinje/metabolismo , Células de Purkinje/patología
13.
PLoS Genet ; 13(6): e1006825, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28640802

RESUMEN

Peroxisome biogenesis disorders (PBD) are a group of multi-system human diseases due to mutations in the PEX genes that are responsible for peroxisome assembly and function. These disorders lead to global defects in peroxisomal function and result in severe brain, liver, bone and kidney disease. In order to study their pathogenesis we undertook a systematic genetic and biochemical study of Drosophila pex16 and pex2 mutants. These mutants are short-lived with defects in locomotion and activity. Moreover these mutants exhibit severe morphologic and functional peroxisomal defects. Using metabolomics we uncovered defects in multiple biochemical pathways including defects outside the canonical specialized lipid pathways performed by peroxisomal enzymes. These included unanticipated changes in metabolites in glycolysis, glycogen metabolism, and the pentose phosphate pathway, carbohydrate metabolic pathways that do not utilize known peroxisomal enzymes. In addition, mutant flies are starvation sensitive and are very sensitive to glucose deprivation exhibiting dramatic shortening of lifespan and hyperactivity on low-sugar food. We use bioinformatic transcriptional profiling to examine gene co-regulation between peroxisomal genes and other metabolic pathways and we observe that the expression of peroxisomal and carbohydrate pathway genes in flies and mouse are tightly correlated. Indeed key steps in carbohydrate metabolism were found to be strongly co-regulated with peroxisomal genes in flies and mice. Moreover mice lacking peroxisomes exhibit defective carbohydrate metabolism at the same key steps in carbohydrate breakdown. Our data indicate an unexpected link between these two metabolic processes and suggest metabolism of carbohydrates could be a new therapeutic target for patients with PBD.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Trastorno Peroxisomal/genética , Peroxisomas/metabolismo , Animales , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Glucosa/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutación , Factor 2 de la Biogénesis del Peroxisoma , Peroxisomas/genética , Transcriptoma
14.
J Neuroinflammation ; 16(1): 61, 2019 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-30866963

RESUMEN

BACKGROUND: Microglia play a central role in most neurological disorders, but the impact of microgliosis on brain environment and clinical functions is not fully understood. Mice lacking multifunctional protein-2 (MFP2), a pivotal enzyme in peroxisomal ß-oxidation, develop a fatal disorder characterized by motor problems similar to the milder form of MFP2 deficiency in humans. The hallmark of disease in mice is the chronic proliferation of microglia in the brain, but molecular pathomechanisms that drive rapid clinical deterioration in human and mice remain unknown. In the present study, we identified the effects of specific deletion of MFP2 from microglia in the brain on immune responses, neuronal functioning, and behavior. METHODS: We created a novel Cx3cr1-Mfp2-/- mouse model and studied the impact of MFP2 deficiency on microglial behavior at different ages using immunohistochemistry and real-time PCR. Pro- and anti-inflammatory responses of Mfp2-/- microglia were assessed in vitro and in vivo after stimulation with IL-1ß/INFγ and IL-4 (in vitro) and LPS and IL-4 (in vivo). Facial nerve axotomy was unilaterally performed in Cx3cr1-Mfp2-/- and control mice, and microglial functioning in response to neuronal injury was subsequently analyzed by histology and real-time PCR. Finally, neuronal function, motor function, behavior, and cognition were assessed using brainstem auditory evoked potentials, grip strength and inverted grid test, open field exploration, and passive avoidance learning, respectively. RESULTS: We found that Mfp2-/- microglia in a genetically intact brain environment adopt an inflammatory activated and proliferative state. In addition, we found that acute inflammatory and neuronal injury provoked normal responses of Mfp2-/- microglia in Cx3cr1-Mfp2-/- mice during the post-injury period. Despite chronic pro-inflammatory microglial reactivity, Cx3cr1-Mfp2-/- mice exhibited normal neuronal transmission, clinical performance, and cognition. CONCLUSION: Our data demonstrate that MFP2 deficiency in microglia causes intrinsic dysregulation of their inflammatory profile, which is not harmful to neuronal function, motor function, and cognition in mice during their first year of life.


Asunto(s)
Encéfalo/patología , Inflamación/patología , Microglía/efectos de los fármacos , Microglía/metabolismo , Proteína-2 Multifuncional Peroxisomal/deficiencia , Animales , Animales Recién Nacidos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cultivadas , Modelos Animales de Enfermedad , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/genética , Conducta Exploratoria/efectos de los fármacos , Conducta Exploratoria/fisiología , Enfermedades del Nervio Facial/complicaciones , Enfermedades del Nervio Facial/patología , Lateralidad Funcional , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Fuerza de la Mano/fisiología , Inflamación/inducido químicamente , Interleucina-4/administración & dosificación , Lipopolisacáridos/toxicidad , Ratones , Ratones Transgénicos , Proteínas de Microfilamentos/metabolismo , Microglía/patología , Proteína-2 Multifuncional Peroxisomal/genética
15.
Mol Cell Biochem ; 456(1-2): 53-62, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30604065

RESUMEN

The retinal pathology in peroxisomal disorders suggests that peroxisomes are important to maintain retinal homeostasis and function. These ubiquitous cell organelles are mainly involved in lipid metabolism, which comprises α- and ß-oxidation and ether lipid synthesis. Although peroxisomes were extensively studied in liver, their role in the retina still remains to be elucidated. As a first step in gaining more insight into the role of peroxisomes in retinal physiology, we performed immunohistochemical stainings, immunoblotting and enzyme activity measurements to reveal the distribution of peroxisomes and peroxisomal lipid metabolizing enzymes in the murine retina. Whereas peroxisomes were detected in every retinal layer, we found a clear differential distribution of the peroxisomal lipid metabolizing enzymes in the neural retina compared to the retinal pigment epithelium. In particular, the ABC transporters that transfer lipid substrates into the organelle as well as several enzymes of the ß-oxidation pathway were enriched either in the neural retina or in the retinal pigment epithelium. In conclusion, our results strongly indicate that peroxisome function varies between different regions in the murine retina.


Asunto(s)
Proteínas del Ojo/metabolismo , Metabolismo de los Lípidos/fisiología , Peroxisomas/enzimología , Retina/enzimología , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Ratones
16.
Adv Exp Med Biol ; 1185: 317-321, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31884631

RESUMEN

Peroxisomal disorders are a group of inherited metabolic diseases, which can be incompatible with life in the postnatal period or allow survival into adulthood. Retinopathy is a recurrent feature in both the severely and mildly affected patients, which can be accompanied with other ophthalmological pathologies. Thanks to next-generation sequencing, patients originally identified with other inherited blinding diseases were reclassified as suffering from peroxisomal disorders. In addition, new peroxisomal gene defects or disease presentations exhibiting retinal degeneration were recently identified. The pathogenic mechanisms underlying retinopathy in peroxisomal disorders remain unresolved.


Asunto(s)
Trastorno Peroxisomal/complicaciones , Degeneración Retiniana/complicaciones , Humanos , Trastorno Peroxisomal/genética , Degeneración Retiniana/genética
17.
Immunology ; 153(3): 342-356, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-28940384

RESUMEN

Macrophage activation is characterized by pronounced metabolic adaptation. Classically activated macrophages show decreased rates of mitochondrial fatty acid oxidation and oxidative phosphorylation and acquire a glycolytic state together with their pro-inflammatory phenotype. In contrast, alternatively activated macrophages require oxidative phosphorylation and mitochondrial fatty acid oxidation for their anti-inflammatory function. Although it is evident that mitochondrial metabolism is regulated during macrophage polarization and essential for macrophage function, little is known on the regulation and role of peroxisomal ß-oxidation during macrophage activation. In this study, we show that peroxisomal ß-oxidation is strongly decreased in classically activated bone-marrow-derived macrophages (BMDM) and mildly induced in alternatively activated BMDM. To examine the role of peroxisomal ß-oxidation in macrophages, we used Mfp2-/- BMDM lacking the key enzyme of this pathway. Impairment of peroxisomal ß-oxidation in Mfp2-/- BMDM did not cause lipid accumulation but rather an altered distribution of lipid species with very-long-chain fatty acids accumulating in the triglyceride and phospholipid fraction. These lipid alterations in Mfp2-/- macrophages led to decreased inflammatory activation of Mfp2-/- BMDM and peritoneal macrophages evidenced by impaired production of several inflammatory cytokines and chemokines, but did not affect anti-inflammatory polarization. The disturbed inflammatory responses of Mfp2-/- macrophages did not affect immune cell infiltration, as mice with selective elimination of MFP2 from myeloid cells showed normal monocyte and neutrophil influx upon challenge with zymosan. Together, these data demonstrate that peroxisomal ß-oxidation is involved in fine-tuning the phenotype of macrophages, probably by influencing the dynamic lipid profile during macrophage polarization.


Asunto(s)
Homeostasis/inmunología , Inflamación/inmunología , Lípidos/inmunología , Macrófagos/inmunología , Animales , Citocinas/inmunología , Activación de Macrófagos/inmunología , Ratones , Monocitos/inmunología , Neutrófilos/inmunología , Oxidación-Reducción , Fosforilación Oxidativa , Fenotipo
18.
Biochim Biophys Acta ; 1863(5): 956-70, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26453805

RESUMEN

The peroxisomal compartment in hepatocytes hosts several essential metabolic conversions. These are defective in peroxisomal disorders that are either caused by failure to import the enzymes in the organelle or by mutations in the enzymes or in transporters needed to transfer the substrates across the peroxisomal membrane. Hepatic pathology is one of the cardinal features in disorders of peroxisome biogenesis and peroxisomal ß-oxidation although it only rarely determines the clinical fate. In mouse models of these diseases liver pathologies also occur, although these are not always concordant with the human phenotype which might be due to differences in diet, expression of enzymes and backup mechanisms. Besides the morphological changes, we overview the impact of peroxisome malfunction on other cellular compartments including mitochondria and the ER. We further focus on the metabolic pathways that are affected such as bile acid formation, and dicarboxylic acid and branched chain fatty acid degradation. It appears that the association between deregulated metabolites and pathological events remains unclear.


Asunto(s)
Hígado/metabolismo , Proteínas de la Membrana/deficiencia , Trastorno Peroxisomal/metabolismo , Peroxisomas/metabolismo , Animales , Modelos Animales de Enfermedad , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/patología , Regulación de la Expresión Génica , Humanos , Hígado/patología , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Redes y Vías Metabólicas/genética , Ratones , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/patología , Mutación , Trastorno Peroxisomal/genética , Trastorno Peroxisomal/patología , Peroxisomas/patología , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Transducción de Señal
19.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(9): 972-990, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28629946

RESUMEN

2-Hydroxyacyl-CoA lyase (HACL1) is a key enzyme of the peroxisomal α-oxidation of phytanic acid. To better understand its role in health and disease, a mouse model lacking HACL1 was investigated. Under normal conditions, these mice did not display a particular phenotype. However, upon dietary administration of phytol, phytanic acid accumulated in tissues, mainly in liver and serum of KO mice. As a consequence of phytanic acid (or a metabolite) toxicity, KO mice displayed a significant weight loss, absence of abdominal white adipose tissue, enlarged and mottled liver and reduced hepatic glycogen and triglycerides. In addition, hepatic PPARα was activated. The central nervous system of the phytol-treated mice was apparently not affected. In addition, 2OH-FA did not accumulate in the central nervous system of HACL1 deficient mice, likely due to the presence in the endoplasmic reticulum of an alternate HACL1-unrelated lyase. The latter may serve as a backup system in certain tissues and account for the formation of pristanic acid in the phytol-fed KO mice. As the degradation of pristanic acid is also impaired, both phytanoyl- and pristanoyl-CoA levels are increased in liver, and the ω-oxidized metabolites are excreted in urine. In conclusion, HACL1 deficiency is not associated with a severe phenotype, but in combination with phytanic acid intake, the normal situation in man, it might present with phytanic acid elevation and resemble a Refsum like disorder.


Asunto(s)
Enoil-CoA Hidratasa/deficiencia , Enoil-CoA Hidratasa/metabolismo , Liasas/metabolismo , Fitol/farmacología , Animales , Modelos Animales de Enfermedad , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/metabolismo , Ácidos Grasos/farmacología , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Noqueados , Oxidación-Reducción , PPAR alfa/metabolismo , Ácido Fitánico/farmacología
20.
Stem Cells ; 34(8): 2256-62, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27068806

RESUMEN

The Ppp1r8 gene encodes NIPP1, a nuclear interactor of protein phosphatase PP1. The deletion of NIPP1 is embryonic lethal at the gastrulation stage, which has hampered its functional characterization in adult tissues. Here, we describe the effects of a conditional deletion of NIPP1 in mouse liver epithelial cells. Ppp1r8(-/-) livers developed a ductular reaction, that is, bile-duct hyperplasia with associated fibrosis. The increased proliferation of biliary epithelial cells was at least partially due to an expansion of the progenitor cell compartment that was independent of liver injury. Gene-expression analysis confirmed an upregulation of progenitor cell markers in the liver knockout livers but showed no effect on the expression of liver-injury associated regulators of cholangiocyte differentiation markers. Consistent with an inhibitory effect of NIPP1 on progenitor cell proliferation, Ppp1r8(-/-) livers displayed an increased sensitivity to diet-supplemented 3,5-diethoxycarbonyl-1,4-dihydrocollidine, which also causes bile-duct hyperplasia through progenitor cell expansion. In contrast, the liver knockouts responded normally to injuries (partial hepatectomy, single CCl4 administration) that are restored through proliferation of differentiated parenchymal cells. Our data indicate that NIPP1 does not regulate the proliferation of hepatocytes but is a suppressor of biliary epithelial cell proliferation, including progenitor cells, in the adult liver. Stem Cells 2016;34:2256-2262.


Asunto(s)
Eliminación de Gen , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Hígado/citología , Células Madre/citología , Animales , Conductos Biliares/patología , Biomarcadores/metabolismo , Proliferación Celular , Hiperplasia , Hígado/metabolismo , Ratones Noqueados , Especificidad de Órganos , Células Madre/metabolismo , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda