Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Parasitology ; 139(7): 894-903, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22405231

RESUMEN

Programmed cell death (PCD) has been observed in many unicellular eukaryotes; however, in very few cases have the pathways been described. Recently the early divergent amitochondrial eukaryote Giardia has been included in this group. In this paper we investigate the processes of PCD in Giardia. We performed a bioinformatics survey of Giardia genomes to identify genes associated with PCD alongside traditional methods for studying apoptosis and autophagy. Analysis of Giardia genomes failed to highlight any genes involved in apoptotic-like PCD; however, we were able to induce apoptotic-like morphological changes in response to oxidative stress (H2O2) and drugs (metronidazole). In addition we did not detect caspase activity in induced cells. Interestingly, we did observe changes resembling autophagy when cells were starved (staining with MDC) and genome analysis revealed some key genes associated with autophagy such as TOR, ATG1 and ATG 16. In organisms such as Trichomonas vaginalis, Entamoeba histolytica and Blastocystis similar observations have been made but no genes have been identified. We propose that Giardia possess a pathway of autophagy and a form of apoptosis very different from the classical known mechanism; this may represent an early form of programmed cell death.


Asunto(s)
Apoptosis/fisiología , Giardia/fisiología , Antiprotozoarios/farmacología , Autofagia , Biología Computacional , Genoma de Protozoos , Giardia/efectos de los fármacos , Giardia/genética , Giardia/ultraestructura , Peróxido de Hidrógeno , Metronidazol/farmacología , Microscopía Electrónica de Transmisión , Estrés Oxidativo
2.
Oncogene ; 39(8): 1830, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31576012

RESUMEN

The original version of this Article contained an error in the author affiliations. Vladislav V. Verkhusha was incorrectly associated with the School of Mathematics, Statistics & Applied Mathematics, National University of Ireland Galway, Galway, Ireland. The correct affiliation is Anatomy and Structural Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY, USA.

3.
Oncogene ; 38(30): 5839-5859, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31285548

RESUMEN

The cytoskeletal interacting protein Septin 9 (SEPT9), a member of the septin gene family, has been proposed to have oncogenic functions. It is a known hot spot of retroviral tagging insertion and a fusion partner of both de novo and therapy-induced mixed lineage leukemia (MLL). Of all septins, SEPT9 holds the strongest link to cancer, especially breast cancer. Murine models of breast cancer frequently exhibit SEPT9 amplification in the form of double minute chromosomes, and about 20% of human breast cancer display genomic amplification and protein over expression at the SEPT9 locus. Yet, a clear mechanism by which SEPT9 elicits tumor-promoting functions is lacking. To obtain unbiased insights on molecular signatures of SEPT9 upregulation in breast tumors, we overexpressed several of its isoforms in breast cancer cell lines. Global transcriptomic profiling supports a role of SEPT9 in invasion. Functional studies reveal that SEPT9 upregulation is sufficient to increase degradation of the extracellular matrix, while SEPT9 downregulation inhibits this process. The degradation pattern is peripheral and associated with focal adhesions (FAs), where it is coupled with increased expression of matrix metalloproteinases (MMPs). SEPT9 overexpression induces MMP upregulation in human tumors and in culture models and promotes MMP3 secretion to the media at FAs. Downregulation of SEPT9 or chemical inhibition of septin filament assembly impairs recruitment of MMP3 to FAs. Our results indicate that SEPT9 promotes upregulation and both trafficking and secretion of MMPs near FAs, thus enhancing migration and invasion of breast cancer cells.


Asunto(s)
Neoplasias de la Mama/patología , Carcinogénesis , Movimiento Celular , Matriz Extracelular/metabolismo , Adhesiones Focales , Glándulas Mamarias Humanas/patología , Metaloproteinasas de la Matriz/metabolismo , Isoformas de Proteínas/fisiología , Septinas/fisiología , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/metabolismo , Matriz Extracelular/enzimología , Humanos , Células MCF-7 , Glándulas Mamarias Humanas/metabolismo , Invasividad Neoplásica , Septinas/genética , Microambiente Tumoral , Regulación hacia Arriba
4.
Sci Rep ; 6: 35810, 2016 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-27808166

RESUMEN

During pregnancy, luminal and basal epithelial cells of the adult mammary gland proliferate and differentiate resulting in remodeling of the adult gland. While pathways that control this process have been characterized in the gland as a whole, the contribution of specific cell subtypes, in particular the basal compartment, remains largely unknown. Basal cells provide structural and contractile support, however they also orchestrate the communication between the stroma and the luminal compartment at all developmental stages. Using RNA-seq, we show that basal cells are extraordinarily transcriptionally dynamic throughout pregnancy when compared to luminal cells. We identified gene expression changes that define specific basal functions acquired during development that led to the identification of novel markers. Enrichment analysis of gene sets from 24 mouse models for breast cancer pinpoint to a potential new function for insulin-like growth factor 1 (Igf1r) in the basal epithelium during lactogenesis. We establish that ß-catenin signaling is activated in basal cells during early pregnancy, and demonstrate that this activity is mediated by lysophosphatidic acid receptor 3 (Lpar3). These findings identify novel pathways active during functional maturation of the adult mammary gland.


Asunto(s)
Linaje de la Célula/genética , Células Epiteliales/citología , Lactancia/fisiología , Glándulas Mamarias Animales/citología , Organogénesis/fisiología , Animales , Células Epiteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Factor I del Crecimiento Similar a la Insulina/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Glándulas Mamarias Animales/metabolismo , Ratones , Embarazo , beta Catenina/genética , beta Catenina/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda